Przejdź do zawartości
Merck
  • Use of multivariate statistical techniques to optimize the separation of 17 capsinoids by ultra performance liquid chromatography using different columns.

Use of multivariate statistical techniques to optimize the separation of 17 capsinoids by ultra performance liquid chromatography using different columns.

Talanta (2015-01-27)
Janclei P Coutinho, Gerardo F Barbero, Oreto F Avellán, A Garcés-Claver, Helena T Godoy, Miguel Palma, Carmelo G Barroso
ABSTRAKT

In this work a multivariate statistical tool (Derringer and Suich optimization) was proposed for the separation of seventeen capsinoids (natural and synthetic) using the UHPLC-DAD chromatography. Capsinoids were analyzed at 280 nm. The variables optimized were the mobile phase (water (0.1% acetic acid as solvent A) and acetonitrile (0.1% as solvent B)), gradient time and flow rate. Two columns with different length (50 and 100 mm) were used for the chromatographic separation. The two columns used properly separated the seventeen capsinoids, however the 100 mm column length showed a better chromatographic separation with a shorter run time and smaller peak widths. These results provided better values of limit of detection and quantification for the 100 mm column length. The better conditions of separation with the 100 mm column length were established with: initial mobile phase with 41.8% of solvent B; 3.96 min of linear gradient time to reach 100% of solvent B; flow rate of 0.679 mL min(-1). A validation of the method has been done with excellent values of repeatability (RSD<1.92) and intermediate precision (RSD<3.92). The developed method has been applied to real samples. Capsiate has been identified and quantified in some varieties of peppers.

MATERIAŁY
Numer produktu
Marka
Opis produktu

Sigma-Aldrich
Diisobutylaluminum hydride solution, 1.0 M in methylene chloride
Sigma-Aldrich
Diisobutylaluminum hydride solution, 1.0 M in THF
Sigma-Aldrich
Diisobutylaluminum hydride solution, 1.0 M in toluene
Sigma-Aldrich
Octanoyl chloride, 99%
Sigma-Aldrich
Acetic acid, ≥99.5%, FCC, FG
Sigma-Aldrich
Acetic acid, natural, ≥99.5%, FG
Sigma-Aldrich
Chloroform, anhydrous, contains amylenes as stabilizer, ≥99%
Sigma-Aldrich
Thionyl chloride, reagent grade, 97%
Sigma-Aldrich
Heptanoyl chloride, 99%
Sigma-Aldrich
Thionyl chloride, ReagentPlus®, ≥99%
Sigma-Aldrich
Diisobutylaluminum hydride, reagent grade
Sigma-Aldrich
Acetic acid, for luminescence, BioUltra, ≥99.5% (GC)
Sigma-Aldrich
Diisobutylaluminum hydride solution, 1.0 M in hexanes
Sigma-Aldrich
Diisobutylaluminum hydride solution, 25 wt. % in toluene
Sigma-Aldrich
Propionyl chloride, 98%
Sigma-Aldrich
Valeroyl chloride, 98%
Sigma-Aldrich
Diisobutylaluminum hydride solution, 1.0 M in cyclohexane
Sigma-Aldrich
Dodecanoyl chloride, purum, ≥97.5% (GC)
Sigma-Aldrich
Chloroform, ACS spectrophotometric grade, ≥99.8%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
Chloroform, ≥99%, PCR Reagent, contains amylenes as stabilizer
Sigma-Aldrich
Chloroform, contains 100-200 ppm amylenes as stabilizer, ≥99.5%
Sigma-Aldrich
Acetic acid, glacial, ACS reagent, ≥99.7%
Sigma-Aldrich
Chloroform, HPLC Plus, for HPLC, GC, and residue analysis, ≥99.9%, contains amylenes as stabilizer
Sigma-Aldrich
Chloroform, HPLC Plus, for HPLC, GC, and residue analysis, ≥99.9%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
Valeroyl chloride, purum, ≥98.0% (T)
Sigma-Aldrich
Diisobutylaluminum hydride solution, 1.0 M in heptane
Sigma-Aldrich
tert-Butylchlorodimethylsilane solution, 50 wt. % in toluene
Sigma-Aldrich
Palmitoyl chloride, 98%
Sigma-Aldrich
Myristoyl chloride, 97%
Sigma-Aldrich
Acetic acid-12C2, 99.9 atom % 12C