Direkt zum Inhalt
Merck
  • Shiga toxin glycosphingolipid receptors of Vero-B4 kidney epithelial cells and their membrane microdomain lipid environment.

Shiga toxin glycosphingolipid receptors of Vero-B4 kidney epithelial cells and their membrane microdomain lipid environment.

Journal of lipid research (2015-10-16)
Daniel Steil, Catherine-Louise Schepers, Gottfried Pohlentz, Nadine Legros, Jana Runde, Hans-Ulrich Humpf, Helge Karch, Johannes Müthing
ZUSAMMENFASSUNG

Shiga toxins (Stxs) are produced by enterohemorrhagic Escherichia coli (EHEC), which cause human infections with an often fatal outcome. Vero cell lines, derived from African green monkey kidney, represent the gold standard for determining the cytotoxic effects of Stxs. Despite their global use, knowledge about the exact structures of the Stx receptor glycosphingolipids (GSLs) and their assembly in lipid rafts is poor. Here we present a comprehensive structural analysis of Stx receptor GSLs and their distribution to detergent-resistant membranes (DRMs), which were prepared from Vero-B4 cells and used as lipid raft equivalents. We identified globotriaosylceramide (Gb3Cer) and globotetraosylceramide (Gb4Cer) as the GSL receptors for Stx1a, Stx2a, and Stx2e subtypes using TLC overlay detection combined with MS. The uncommon Stx receptor, globopentaosylceramide (Gb5Cer, Galβ3GalNAcβ3Galα4Galβ4Glcβ1Cer), which was specifically recognized (in addition to Gb3Cer and Gb4Cer) by Stx2e, was fully structurally characterized. Lipoforms of Stx receptor GSLs were found to mainly harbor ceramide moieties composed of sphingosine (d18:1) and C24:0/C24:1 or C16:0 fatty acid. Moreover, co-occurrence with lipid raft markers, SM and cholesterol, in DRMs suggested GSL association with membrane microdomains. This study provides the basis for further exploring the functional impact of lipid raft-associated Stx receptors for toxin-mediated injury of Vero-B4 cells.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Chloroform, contains 100-200 ppm amylenes as stabilizer, ≥99.5%
Sigma-Aldrich
Saccharose, for molecular biology, ≥99.5% (GC)
Sigma-Aldrich
Saccharose, ≥99.5% (GC)
Sigma-Aldrich
Chloroform, contains ethanol as stabilizer, ACS reagent, ≥99.8%
Sigma-Aldrich
Cholesterin, Sigma Grade, ≥99%
Sigma-Aldrich
Saccharose, ≥99.5% (GC), BioXtra
Sigma-Aldrich
Saccharose, BioUltra, for molecular biology, ≥99.5% (HPLC)
Sigma-Aldrich
Natriumpyruvat, powder, BioReagent, suitable for cell culture, suitable for insect cell culture, ≥99%
Sigma-Aldrich
Methanol, Laboratory Reagent, ≥99.6%
Sigma-Aldrich
Methanol, anhydrous, 99.8%
Sigma-Aldrich
Chloroform, contains amylenes as stabilizer, ACS reagent, ≥99.8%
Sigma-Aldrich
Chloroform, ReagentPlus®, ≥99.8%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
Cholesterin, powder, BioReagent, suitable for cell culture, ≥99%
Sigma-Aldrich
Methanol, BioReagent, ≥99.93%
Sigma-Aldrich
Methanol, Absolute - Acetone free
Sigma-Aldrich
Saccharose, ≥99.5% (GC), BioReagent, suitable for cell culture, suitable for insect cell culture
Sigma-Aldrich
Methanol, ACS spectrophotometric grade, ≥99.9%
Sigma-Aldrich
Saccharose, ≥99.5% (GC)
Sigma-Aldrich
Natriumtaurodesoxycholat Hydrat, ≥95% (HPLC)
Sigma-Aldrich
Natriumpyruvat, ReagentPlus®, ≥99%
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Cholesterin, from sheep wool, ≥92.5% (GC), powder
Sigma-Aldrich
Chloroform, ACS spectrophotometric grade, ≥99.8%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
Phenylessigsäure, 99%
Sigma-Aldrich
Chloroform, anhydrous, ≥99%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
Saccharose, ≥99.5% (GC), Grade II, suitable for plant cell culture
Sigma-Aldrich
Chloroform, biotech. grade, ≥99.8%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
Natriumpyruvat, Hybri-Max, powder, suitable for hybridoma
Sigma-Aldrich
Chloroform, anhydrous, contains amylenes as stabilizer, ≥99%