Skip to Content
Merck
All Photos(1)

Key Documents

P3296

Millipore

Protein G Sepharose, Fast Flow

recombinant, expressed in E. coli, aqueous ethanol suspension

Synonym(s):

Protein G-Agarose, Fast Flow from Streptococcus sp.

Sign Into View Organizational & Contract Pricing


About This Item

MDL number:
UNSPSC Code:
41106500
NACRES:
NA.56

recombinant

expressed in E. coli

form

aqueous ethanol suspension

analyte chemical class(es)

proteins (Immunoglobulins of various mammalian species)

extent of labeling

~2 mg per mL

technique(s)

affinity chromatography: suitable

matrix

Sepharose 4B Fast Flow

matrix activation

cyanogen bromide

matrix attachment

amino

matrix spacer

1 atom

storage temp.

2-8°C

Looking for similar products? Visit Product Comparison Guide

General description

Protein G is an immunoglobulin (IgG)-binding bacterial cell wall protein isolated from group G streptococcal strain, G-148. This protein can be extracted from the cells by papain digestion and purified by the sequential use of ion-exchange chromatography on DEAE-Sephadex, affinity chromatography on Sepharose-coupled human IgG, and gel chromatography on Sephadex G-200. The binding between protein G and various polyclonal and monoclonal IgG is basically pH dependent between 2.8 and 10, with the strongest binding at pH 4 and 5, and weakest at pH 10. It acts as a powerful reagent for the detection of IgG.
Protein G is an immunoglobulin (IgG)-binding bacterial cell wall protein isolated from group G streptococcal strain, G-148. This protein can be extracted from the cells by papain digestion and purified by the sequential use of ion-exchange chromatography on DEAE-Sephadex, affinity chromatography on Sepharose-coupled human IgG, and gel chromatography on Sephadex G-200. The binding between protein G and various polyclonal and monoclonal IgG is basically pH dependent between 2.8 and 10, with the strongest binding at pH 4 and 5, and weakest at pH 10. It acts as a powerful reagent for the detection of IgG.

P3296-5Ml′s updated product number is GE17-0618-01

Application

Protein G-Sepharose is used in affinity chromatography, protein chromatography, antibody purification and characterization, immunoaffinity matrices, protein A, G and L resins, protein interaction, and purification and detection. Protein G-Sepharose has been used to develop a strategy to confirm the presence of anti-erythropoietin neutralizing antibodies in human serum as well as to compare methods for depletion of albumin and IgG from equine serum.

Physical form

Suspension in 20% ethanol

Preparation Note

Prepared with recombinant streptococcal Protein G from which the albumin-binding region has been genetically deleted

Legal Information

Sepharose is a trademark of Cytiva

Pictograms

Flame

Signal Word

Warning

Hazard Statements

Hazard Classifications

Flam. Liq. 3

Storage Class Code

3 - Flammable liquids

WGK

WGK 3

Flash Point(F)

115.0 °F - closed cup

Flash Point(C)

46.1 °C - closed cup


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

G Yang et al.
Oncogene, 26(1), 91-101 (2006-06-27)
The t(8;21) chromosomal translocation that generates the fusion oncoprotein RUNX1-ETO predominates in leukemia patients of the French-American-British (FAB) class M2 subtype. The oncoprotein has the capacity to promote expansion of hematopoietic stem/progenitor cells and induces leukemia in association with other
B Akerström et al.
The Journal of biological chemistry, 261(22), 10240-10247 (1986-08-05)
Protein G, an IgG-binding molecule, was prepared from the cell walls of a group G streptococcal strain, G-148. The protein could be extracted from the cells by papain digestion and purified by the sequential use of ion-exchange chromatography on DEAE-Sephadex
Cristina Hidalgo-Carcedo et al.
Nature cell biology, 13(1), 49-58 (2010-12-21)
Collective cell migration occurs in a range of contexts: cancer cells frequently invade in cohorts while retaining cell-cell junctions. Here we show that collective invasion by cancer cells depends on decreasing actomyosin contractility at sites of cell-cell contact. When actomyosin
B Akerström et al.
Journal of immunology (Baltimore, Md. : 1950), 135(4), 2589-2592 (1985-10-01)
Protein G is an immunoglobulin (IgG)-binding bacterial cell wall protein recently isolated from group G streptococci. We have investigated the avidity of protein G for various monoclonal and polyclonal Ig of the IgG class, and compared it with the binding
Yi-Jye Chern et al.
Cell death & disease, 10(7), 504-504 (2019-06-28)
Therapy-refractory disease is one of the main contributors of treatment failure in cancer. In colorectal cancer (CRC), SPARC can function as a sensitizer to conventional chemotherapy by enhancing apoptosis by interfering with the activity of Bcl-2. Here, we examine a

Protocols

Techniques for protein antigen molecular weight determination, protein interactions, enzymatic activity, and post-translational modifications.

Techniques for protein antigen molecular weight determination, protein interactions, enzymatic activity, and post-translational modifications.

Techniques for protein antigen molecular weight determination, protein interactions, enzymatic activity, and post-translational modifications.

Techniques for protein antigen molecular weight determination, protein interactions, enzymatic activity, and post-translational modifications.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service