Przejdź do zawartości
Merck

Evaluation of improved PAMAM-G5 conjugates for gene delivery targeted to the transferrin receptor.

European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V (2015-05-26)
Koldo Urbiola, Laura Blanco-Fernández, Gemma Navarro, Wolfgang Rödl, Ernst Wagner, Manfred Ogris, Conchita Tros de Ilarduya
ABSTRAKT

The transfection activity of non-viral vectors is highly dependent on the delivery capacity of the carriers. Therefore, the aim of this work was to evaluate the activity of a new PAMAM dendrimer-Transferrin conjugate (P-Tf) with improved gene delivery activity to cancer cells. The formulations containing the novel P-Tf were able to bind pDNA and protect it from the activity of DNAse I enzyme. Moreover, it formed nanoparticles with positive surface charge, although the presence of Tf led to a decrease of the zeta potential to almost electroneutral values. This new vector, formulated at N/P 6, exhibited excellent transfection efficacy in HeLa, HepG2 and CT26 cell lines, whereas in Neuro2A no improvement was achieved. Compared to control complexes with branched polyethylenimine (bPEI), targeted dendriplexes (complexes formed by cationic polymeric dendrimers and DNA) were more efficient in HepG2 and HeLa cells. Cellular viability was always kept over 80% in these cell lines with higher values than bPEI control polyplexes. The uptake via receptor-mediated endocytosis was ensured by a competition assay, by adding an excess of free Tf, which led to a decrease in the transfection activity of targeted dendriplexes.

MATERIAŁY
Numer produktu
Marka
Opis produktu

Sigma-Aldrich
Ethidium bromide solution, for fluorescence, ~1% in H2O
Supelco
Pyridaben, PESTANAL®, analytical standard
Sigma-Aldrich
D-(+)-Glucose, BioUltra, anhydrous, ≥99.5% (sum of enantiomers, HPLC)
Sigma-Aldrich
Boric acid-11B, ≥99 atom % 11B
Sigma-Aldrich
D-Glucose-12C6, 16O6, 99.9 atom % 16O, 99.9 atom % 12C
Sigma-Aldrich
D-(+)-Glucose, ACS reagent
Sigma-Aldrich
D-(+)-Glucose, ≥99.5% (GC), BioXtra
Sigma-Aldrich
HEPES, ≥99.5% (titration)
Sigma-Aldrich
HEPES, BioXtra, pH 5.0-6.5 (1 M in H2O), ≥99.5% (titration)
Sigma-Aldrich
D-(+)-Glucose, suitable for mouse embryo cell culture, ≥99.5% (GC)
Sigma-Aldrich
HEPES, BioXtra, suitable for mouse embryo cell culture, ≥99.5% (titration)
Sigma-Aldrich
D-(+)-Glucose, ≥99.5% (GC)
SAFC
HEPES
Sigma-Aldrich
HEPES, anhydrous, free-flowing, Redi-Dri, ≥99.5%
SAFC
HEPES
Sigma-Aldrich
D-(+)-Glucose, powder, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99.5%
Sigma-Aldrich
Ethidium bromide solution, BioReagent, for molecular biology, 500 μg/mL in H2O
Sigma-Aldrich
HEPES, BioUltra, for molecular biology, ≥99.5% (T)
Sigma-Aldrich
Ethidium bromide solution, BioReagent, for molecular biology, 10 mg/mL in H2O
Sigma-Aldrich
D-(+)-Glucose, Hybri-Max, powder, BioReagent, suitable for hybridoma
Sigma-Aldrich
HEPES, BioPerformance Certified, ≥99.5% (titration), suitable for cell culture
Sigma-Aldrich
L-Glutamine
Sigma-Aldrich
Boric acid, 99.97% trace metals basis
Sigma-Aldrich
Boric acid, BioUltra, for molecular biology, ≥99.5% (T)
Sigma-Aldrich
L-Glutamine, BioUltra, ≥99.5% (NT)
Sigma-Aldrich
Ethylenediamine solution, technical, 75-80%
SAFC
L-Glutamine
Sigma-Aldrich
HEPES buffer solution, 1 M in H2O
Sigma-Aldrich
Boric acid, 99.999% trace metals basis
Sigma-Aldrich
Ethylenediaminetetraacetic acid, anhydrous, crystalline, BioReagent, suitable for cell culture