Pular para o conteúdo
Merck
  • Bioenergetic consequences from xenotopic expression of a tunicate AOX in mouse mitochondria: Switch from RET and ROS to FET.

Bioenergetic consequences from xenotopic expression of a tunicate AOX in mouse mitochondria: Switch from RET and ROS to FET.

Biochimica et biophysica acta. Bioenergetics (2019-12-12)
Marten Szibor, Timur Gainutdinov, Erika Fernandez-Vizarra, Eric Dufour, Zemfira Gizatullina, Grazyna Debska-Vielhaber, Juliana Heidler, Ilka Wittig, Carlo Viscomi, Frank Gellerich, Anthony L Moore
RESUMO

Electron transfer from all respiratory chain dehydrogenases of the electron transport chain (ETC) converges at the level of the quinone (Q) pool. The Q redox state is thus a function of electron input (reduction) and output (oxidation) and closely reflects the mitochondrial respiratory state. Disruption of electron flux at the level of the cytochrome bc1 complex (cIII) or cytochrome c oxidase (cIV) shifts the Q redox poise to a more reduced state which is generally sensed as respiratory stress. To cope with respiratory stress, many species, but not insects and vertebrates, express alternative oxidase (AOX) which acts as an electron sink for reduced Q and by-passes cIII and cIV. Here, we used Ciona intestinalis AOX xenotopically expressed in mouse mitochondria to study how respiratory states impact the Q poise and how AOX may be used to restore respiration. Particularly interesting is our finding that electron input through succinate dehydrogenase (cII), but not NADH:ubiquinone oxidoreductase (cI), reduces the Q pool almost entirely (>90%) irrespective of the respiratory state. AOX enhances the forward electron transport (FET) from cII thereby decreasing reverse electron transport (RET) and ROS specifically when non-phosphorylating. AOX is not engaged with cI substrates, however, unless a respiratory inhibitor is added. This sheds new light on Q poise signaling, the biological role of cII which enigmatically is the only ETC complex absent from respiratory supercomplexes but yet participates in the tricarboxylic acid (TCA) cycle. Finally, we delineate potential risks and benefits arising from therapeutic AOX transfer.

MATERIAIS
Número do produto
Marca
Descrição do produto

Sigma-Aldrich
MOPS, ≥99.5% (titration)
Sigma-Aldrich
Sacarose, ≥99.5% (GC), BioXtra
Sigma-Aldrich
Antimycin A from Streptomyces sp.
Sigma-Aldrich
Adenosina 5′-difosfato, bacterial, ≥95% (HPLC)
Sigma-Aldrich
Sodium azide, ReagentPlus®, ≥99.5%
Sigma-Aldrich
Piruvato de sódio, powder, BioReagent, suitable for cell culture, suitable for insect cell culture, ≥99%
Sigma-Aldrich
Carbonilcianeto 4-(trifluorometoxi)fenil-hidrazona, ≥98% (TLC), powder
Sigma-Aldrich
Rotenone, ≥95%
Sigma-Aldrich
Peroxidase, Type II, essentially salt-free, lyophilized powder, 150-250 units/mg solid (using pyrogallol)
Sigma-Aldrich
Oligomycin from Streptomyces diastatochromogenes, ≥90% total oligomycins basis (HPLC)
Sigma-Aldrich
Anti-IgG de coelho (molécula inteira)–peroxidase, affinity isolated antibody
Sigma-Aldrich
DL-Ditiotreitol, ≥99.0% (RT)
Sigma-Aldrich
D-Manitol, ≥98% (GC)
Sigma-Aldrich
Adenosine 5′-diphosphate, ≥95% (HPLC)
Sigma-Aldrich
Ácido L-glutâmico, ≥98.0% (NT)
Sigma-Aldrich
Proteinase, bacteriana, Type XXIV, 7.0-14.0 units/mg solid, lyophilized powder
Sigma-Aldrich
Propil galato, powder
Sigma-Aldrich
Ácido etilenoglicol-bis(2-aminoetiléter)-N,N,N′,N′-tetracético, ≥97.0%
Sigma-Aldrich
L-(−)-Malic acid, ≥95% (titration)
Sigma-Aldrich
Sodium succinate dibasic hexahydrate, ReagentPlus®, ≥99%
Sigma-Aldrich
Safranin O, Dye content ≥85 %
Sigma-Aldrich
Superoxide Dismutase from bovine liver, ammonium sulfate suspension, 2,000-6,000 units/mg protein (biuret)
Supelco
[(3R)-3-Hydroxytetradecanoyl]-L-carnitine, analytical standard