Direkt zum Inhalt
Merck
  • Comparison of rheological properties, follicular penetration, drug release, and permeation behavior of a novel topical drug delivery system and a conventional cream.

Comparison of rheological properties, follicular penetration, drug release, and permeation behavior of a novel topical drug delivery system and a conventional cream.

European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V (2014-12-03)
Andreas Lauterbach, Christel C Müller-Goymann
ZUSAMMENFASSUNG

A novel adapalene-loaded solid lipid microparticle (SLMA) dispersion as a topical drug delivery system (TDDS) for follicular penetration has been introduced. The objective of the present study was to investigate the rheological properties, the follicular penetration with differential tape stripping on porcine ear skin, the drug release in sebum and stratum corneum (SC) lipid mixtures, and the permeation behavior across human SC in comparison with a commercially available cream as standard. Physicochemical characterization reveals that adapalene is homogeneously distributed within the SLMA dispersion and chemically stable for at least 24 weeks. The SLMA dispersion shows a lower complex viscosity at 20 °C and a higher one at 32 °C than the cream, while the phase angle of the dispersion is always larger at both temperatures. Both formulations feature an equivalent potential for follicular penetration and deposition. However, the superiority of the SLMA dispersion is based on the preferential drug release in sebum while there is no or just a slight release in SC lipids and no permeation for both formulations. Due to the similarity of the glyceride matrix of the SLMA to sebum components, a targeted drug delivery into sebum and thereby an increased follicular penetration may be facilitated.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
Acetonitril, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Tetrahydrofuran, inhibitor-free, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Essigsäure, glacial, ACS reagent, ≥99.7%
Sigma-Aldrich
Acetonitril, HPLC Plus, ≥99.9%
Sigma-Aldrich
Glycerin, ACS reagent, ≥99.5%
Sigma-Aldrich
Essigsäure, glacial, ReagentPlus®, ≥99%
Sigma-Aldrich
Glycerin, for molecular biology, ≥99.0%
Sigma-Aldrich
Tetrahydrofuran, contains 250 ppm BHT as inhibitor, ACS reagent, ≥99.0%
Sigma-Aldrich
Glycerin, ReagentPlus®, ≥99.0% (GC)
Sigma-Aldrich
Acetonitril, anhydrous, 99.8%
Sigma-Aldrich
Acetonitril, ACS reagent, ≥99.5%
Sigma-Aldrich
Tetrahydrofuran, anhydrous, ≥99.9%, inhibitor-free
Sigma-Aldrich
Cholesterin, Sigma Grade, ≥99%
Sigma-Aldrich
Acetonitril, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Essigsäure, glacial, ≥99.99% trace metals basis
Sigma-Aldrich
Oleinsäure, technical grade, 90%
Sigma-Aldrich
Tetrahydrofuran, anhydrous, contains 250 ppm BHT as inhibitor, ≥99.9%
Sigma-Aldrich
Essigsäure -Lösung, suitable for HPLC
Sigma-Aldrich
Zitronensäure, meets analytical specification of Ph. Eur., BP, USP, E330, anhydrous, 99.5-100.5% (based on anhydrous substance)
Sigma-Aldrich
Zirkonium(IV)-oxychlorid Octahydrat, reagent grade, 98%
Sigma-Aldrich
Palmitinsäure, ≥99%
Sigma-Aldrich
Zitronensäure, ACS reagent, ≥99.5%
Sigma-Aldrich
Cholesterin, powder, BioReagent, suitable for cell culture, ≥99%
Supelco
Methylparaben, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Glycerin -Lösung, 83.5-89.5% (T)
Sigma-Aldrich
Glycerin, ≥99.5%
Sigma-Aldrich
Glycerin, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for electrophoresis, ≥99% (GC)
Sigma-Aldrich
Oleinsäure, BioReagent, suitable for cell culture
Sigma-Aldrich
Glycerin, BioUltra, for molecular biology, anhydrous, ≥99.5% (GC)
Sigma-Aldrich
Squalen, ≥98%, liquid