Ugrás a tartalomra
Merck

Properties of Slo1 K+ channels with and without the gating ring.

Proceedings of the National Academy of Sciences of the United States of America (2013-09-27)
Gonzalo Budelli, Yanyan Geng, Alice Butler, Karl L Magleby, Lawrence Salkoff
KIVONAT

High-conductance Ca(2+)- and voltage-activated K(+) (Slo1 or BK) channels (KCNMA1) play key roles in many physiological processes. The structure of the Slo1 channel has two functional domains, a core consisting of four voltage sensors controlling an ion-conducting pore, and a larger tail that forms an intracellular gating ring thought to confer Ca(2+) and Mg(2+) sensitivity as well as sensitivity to a host of other intracellular factors. Although the modular structure of the Slo1 channel is known, the functional properties of the core and the allosteric interactions between core and tail are poorly understood because it has not been possible to study the core in the absence of the gating ring. To address these questions, we developed constructs that allow functional cores of Slo1 channels to be expressed by replacing the 827-amino acid gating ring with short tails of either 74 or 11 amino acids. Recorded currents from these constructs reveals that the gating ring is not required for either expression or gating of the core. Voltage activation is retained after the gating ring is replaced, but all Ca(2+)- and Mg(2+)-dependent gating is lost. Replacing the gating ring also right-shifts the conductance-voltage relation, decreases mean open-channel and burst duration by about sixfold, and reduces apparent mean single-channel conductance by about 30%. These results show that the gating ring is not required for voltage activation but is required for Ca(2+) and Mg(2+) activation. They also suggest possible actions of the unliganded (passive) gating ring or added short tails on the core.

ANYAGOK
Cikkszám
Márka
Termékleírás

Sigma-Aldrich
Tetraethylammonium chloride hydrate
Sigma-Aldrich
Tetraethylammonium iodide, 98%
Sigma-Aldrich
Tetraethylammonium hydroxide solution, 20 wt. % in H2O
Supelco
Tetraethylammonium chloride, for electrochemical analysis, ≥99.0%
Sigma-Aldrich
Tetraethylammonium hydroxide solution, ~25% in methanol (~1.5 M)
Sigma-Aldrich
Tetraethylammonium chloride, BioUltra, for molecular biology, ≥99.0% (AT)
Supelco
Tetraethylammonium hydroxide solution, ~1.0 M (CH3CH2)4NOH in H2O, electrochemical grade
Sigma-Aldrich
Tetraethylammonium bromide, reagent grade, 98%
Sigma-Aldrich
Tetraethylammonium bromide, ReagentPlus®, 99%
Sigma-Aldrich
Tetraethylammonium hydroxide solution, 35 wt. % in H2O
Sigma-Aldrich
Tetraethylammonium chloride, ≥98% (titration)