Direkt zum Inhalt
Merck
  • Comparative proteomic analysis of oil palm leaves infected with Ganoderma boninense revealed changes in proteins involved in photosynthesis, carbohydrate metabolism, and immunity and defense.

Comparative proteomic analysis of oil palm leaves infected with Ganoderma boninense revealed changes in proteins involved in photosynthesis, carbohydrate metabolism, and immunity and defense.

Electrophoresis (2015-05-02)
Leona Daniela Jeffery Daim, Tony Eng Keong Ooi, Nalisha Ithnin, Hirzun Mohd Yusof, Harikrishna Kulaveerasingam, Nazia Abdul Majid, Saiful Anuar Karsani
ZUSAMMENFASSUNG

The basidiomycete fungal pathogen Ganoderma boninense is the causative agent for the incurable basal stem rot (BSR) disease in oil palm. This disease causes significant annual crop losses in the oil palm industry. Currently, there is no effective method for disease control and elimination, nor is any molecular marker for early detection of the disease available. An understanding of how BSR affects protein expression in plants may help identify and/or assist in the development of an early detection protocol. Although the mode of infection of BSR disease is primarily via the root system, defense-related genes have been shown to be expressed in both the root and leafs. Thus, to provide an insight into the changes in the global protein expression profile in infected plants, comparative 2DE was performed on leaf tissues sampled from palms with and without artificial inoculation of the Ganoderma fungus. Comparative 2DE revealed that 54 protein spots changed in abundance. A total of 51 protein spots were successfully identified by LC-QTOF MS/MS. The majority of these proteins were those involved in photosynthesis, carbohydrate metabolism as well as immunity and defense.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
Trizma® Base, Primary Standard and Buffer, ≥99.9% (titration), crystalline
Sigma-Aldrich
Natriumdodecylsulfat, BioReagent, suitable for electrophoresis, for molecular biology, ≥98.5% (GC)
Sigma-Aldrich
Glycin, ReagentPlus®, ≥99% (HPLC)
Sigma-Aldrich
Trizma® Base, BioPerformance Certified, meets EP, USP testing specifications, suitable for cell culture, ≥99.9% (titration)
Sigma-Aldrich
Glycin, suitable for electrophoresis, ≥99%
Sigma-Aldrich
Natriumdodecylsulfat, ≥99.0% (GC), dust-free pellets
Sigma-Aldrich
Glycin, BioUltra, for molecular biology, ≥99.0% (NT)
Sigma-Aldrich
Natriumdodecylsulfat -Lösung, BioUltra, for molecular biology, 10% in H2O
Sigma-Aldrich
Sigma 7-9®, ≥99% (titration), crystalline
Sigma-Aldrich
Tromethamin, meets USP testing specifications
Sigma-Aldrich
Trizma® Base, BioUltra, for molecular biology, ≥99.8% (T)
Sigma-Aldrich
Natriumdodecylsulfat -Lösung, BioUltra, for molecular biology, 20% in H2O
Sigma-Aldrich
Trizma® Base, ≥99.0% (T)
Sigma-Aldrich
Glycin, from non-animal source, meets EP, JP, USP testing specifications, suitable for cell culture, ≥98.5%
Sigma-Aldrich
Natriumdodecylsulfat, BioUltra, for molecular biology, ≥99.0% (GC)
SAFC
Glycin
Sigma-Aldrich
Trizma® Base, BioXtra, pH 10.5-12.0 (1 M in H2O), ≥99.9% (titration)
Sigma-Aldrich
Natriumdodecylsulfat, ACS reagent, ≥99.0%
Supelco
Natriumdodecylsulfat, dust-free pellets, suitable for electrophoresis, for molecular biology, ≥99.0% (GC)
Sigma-Aldrich
Trizma® Base, ≥99.9% (titration), crystalline
Sigma-Aldrich
Tris(hydroxymethyl)aminomethan, ACS reagent, ≥99.8%
Sigma-Aldrich
Natriumdodecylsulfat, ≥98.0% (GC)
Sigma-Aldrich
Natriumdodecylsulfat, ReagentPlus®, ≥98.5% (GC)
Sigma-Aldrich
Thioharnstoff, ACS reagent, ≥99.0%
Sigma-Aldrich
Trizma® Base, anhydrous, free-flowing, Redi-Dri, ≥99.9%
Sigma-Aldrich
Glycin, BioXtra, ≥99% (titration)
SAFC
Tromethamin
Sigma-Aldrich
Trizma® Base, puriss. p.a., ≥99.7% (T)
Sigma-Aldrich
Bromphenolblau, Sulton Form, ACS reagent
Sigma-Aldrich
Bromphenolblau, titration: suitable