Passa al contenuto
Merck
  • Oxidative Stress Increases Surface Toll-Like Receptor 4 Expression in Murine Macrophages Via Ceramide Generation.

Oxidative Stress Increases Surface Toll-Like Receptor 4 Expression in Murine Macrophages Via Ceramide Generation.

Shock (Augusta, Ga.) (2015-05-07)
Patrick S Tawadros, Kinga A Powers, Menachem Ailenberg, Simone E Birch, John C Marshall, Katalin Szaszi, Andras Kapus, Ori D Rotstein
ABSTRACT

Multiorgan failure is a major cause of late mortality following trauma. Oxidative stress generated during shock/resuscitation contributes to tissue injury by priming the immune system for an exaggerated response to subsequent inflammatory stimuli, such as lipopolysaccharide (LPS). We recently reported that oxidative stress causes rapid recruitment of the LPS receptor Toll-like receptor 4 (TLR4) to membrane lipid rafts, thus increasing LPS responsiveness and cellular priming. We hypothesized that activation of Src family kinases by oxidants might contribute to these events. We utilized microscopy, flow cytometry, Western blotting, and thin-layer chromatography methods. Using hydrogen peroxide in vitro and hemorrhagic shock/resuscitation in vivo, oxidant-induced TLR4 translocation in macrophages occurred in an Src-dependent manner. Approaches supporting this conclusion included pharmacologic inhibition of the Src family kinases by PP2, Src inhibition by a molecular approach of cell transfection with Csk, and genetic inhibition of all Src kinases relevant to the monocyte/macrophage lineage in hckfgrlyn triple knockout mice. To evaluate the upstream molecules involved in Src activation, we evaluated the ability of oxidative stress to activate the bioactive lipid molecule ceramide. Oxidants induced ceramide generation in macrophages both in vitro and in vivo, an effect that appears to be due to activation of the acid sphingomyelinase. Using pharmacological approaches, ceramide was shown to be both necessary and sufficient to mediate TLR4 translocation to the plasma membrane in an Src-dependent manner. This study identifies a hierarchy of signaling molecules following oxidative stress that might represent novel targets for therapy in critical illness and organ injury.

MATERIALI
N° Catalogo
Marchio
Descrizione del prodotto

Sigma-Aldrich
Dimetil solfossido, Hybri-Max, sterile-filtered, BioReagent, suitable for hybridoma, ≥99.7%
Sigma-Aldrich
Dimetil solfossido, for molecular biology
Sigma-Aldrich
Dimetil solfossido, sterile-filtered, BioPerformance Certified, meets EP, USP testing specifications, suitable for hybridoma
Sigma-Aldrich
Perossido di idrogeno, 30 % (w/w) in H2O, contains stabilizer
Sigma-Aldrich
Glicina, ReagentPlus®, ≥99% (HPLC)
Sigma-Aldrich
Dimetil solfossido, ≥99.5% (GC), suitable for plant cell culture
Sigma-Aldrich
Glicina, suitable for electrophoresis, ≥99%
Sigma-Aldrich
Imidazolo, ReagentPlus®, 99%
Sigma-Aldrich
Cloruro di magnesio, for molecular biology, 1.00 M±0.01 M
Sigma-Aldrich
Cloruro di magnesio, anhydrous, ≥98%
Sigma-Aldrich
DL-Dithiothreitol solution, BioUltra, for molecular biology, ~1 M in H2O
Supelco
DL-Dithiothreitol solution, 1 M in H2O
Sigma-Aldrich
Glicina, BioUltra, for molecular biology, ≥99.0% (NT)
Sigma-Aldrich
G 418, 50 mg/mL in H2O, 0.1 μm filtered, BioReagent, suitable for cell culture
Sigma-Aldrich
Acido tetraacetico etilenico -bis(2-aminoetiletere)-N,N,N′,N′, for molecular biology, ≥97.0%
Sigma-Aldrich
G 418, powder, BioReagent, suitable for cell culture
Sigma-Aldrich
Imidazolo, for molecular biology, ≥99% (titration)
Sigma-Aldrich
Lithium chloride, for molecular biology, ≥99%
Sigma-Aldrich
Glicina, from non-animal source, meets EP, JP, USP testing specifications, suitable for cell culture, ≥98.5%
Sigma-Aldrich
Ethylenediaminetetraacetic acid solution, 0.02% in DPBS (0.5 mM), sterile-filtered, BioReagent, suitable for cell culture
Sigma-Aldrich
Lithium chloride, powder, ≥99.98% trace metals basis
Sigma-Aldrich
Imidazole buffer Solution, BioUltra, 1 M in H2O
Sigma-Aldrich
Dimetil solfossido, BioUltra, for molecular biology, ≥99.5% (GC)
Sigma-Aldrich
Lithium chloride solution, 8 M, for molecular biology, ≥99%
SAFC
Glicina
Sigma-Aldrich
Imidazolo, BioUltra, ≥99.5% (GC)
Sigma-Aldrich
Cloruro di magnesio, powder, <200 μm
Sigma-Aldrich
Ethylenediaminetetraacetic acid, anhydrous, crystalline, BioReagent, suitable for cell culture
Sigma-Aldrich
Ethylenediaminetetraacetic acid, 99.995% trace metals basis
Sigma-Aldrich
Fluorescein, for fluorescence, free acid