Direkt zum Inhalt
Merck
  • The peritrophic matrix mediates differential infection outcomes in the tsetse fly gut following challenge with commensal, pathogenic, and parasitic microbes.

The peritrophic matrix mediates differential infection outcomes in the tsetse fly gut following challenge with commensal, pathogenic, and parasitic microbes.

Journal of immunology (Baltimore, Md. : 1950) (2014-06-11)
Brian L Weiss, Amy F Savage, Bridget C Griffith, Yineng Wu, Serap Aksoy
ZUSAMMENFASSUNG

The insect gut is lined by a protective, chitinous peritrophic matrix (PM) that separates immunoreactive epithelial cells from microbes present within the luminal contents. Tsetse flies (Glossina spp.) imbibe vertebrate blood exclusively and can be exposed to foreign microorganisms during the feeding process. We used RNA interference-based reverse genetics to inhibit the production of a structurally robust PM and then observed how this procedure impacted infection outcomes after per os challenge with exogenous bacteria (Enterobacter sp. and Serratia marcescens strain Db11) and parasitic African trypanosomes. Enterobacter and Serratia proliferation was impeded in tsetse that lacked an intact PM because these flies expressed the antimicrobial peptide gene, attacin, earlier in the infection process than did their counterparts that housed a fully developed PM. After challenge with trypanosomes, attacin expression was latent in tsetse that lacked an intact PM, and these flies were thus highly susceptible to parasite infection. Our results suggest that immunodeficiency signaling pathway effectors, as opposed to reactive oxygen intermediates, serve as the first line of defense in tsetse's gut after the ingestion of exogenous microorganisms. Furthermore, tsetse's PM is not a physical impediment to infection establishment, but instead serves as a barrier that regulates the fly's ability to immunologically detect and respond to the presence of these microbes. Collectively, our findings indicate that effective insect antimicrobial responses depend largely upon the coordination of multiple host and microbe-specific developmental factors.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
Saccharose, for molecular biology, ≥99.5% (GC)
Sigma-Aldrich
Saccharose, ≥99.5% (GC)
Sigma-Aldrich
Saccharose, ≥99.5% (GC), BioXtra
Sigma-Aldrich
Saccharose, BioUltra, for molecular biology, ≥99.5% (HPLC)
USP
Saccharose, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Saccharose, ≥99.5% (GC), BioReagent, suitable for cell culture, suitable for insect cell culture
Sigma-Aldrich
Saccharose, ≥99.5% (GC)
Supelco
Saccharose, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Saccharose, ≥99.5% (GC), Grade II, suitable for plant cell culture
Sigma-Aldrich
Saccharose, Grade I, ≥99% (GC), suitable for plant cell culture
Sigma-Aldrich
Saccharose, meets USP testing specifications
Sigma-Aldrich
Saccharose, ACS reagent
Sigma-Aldrich
Saccharose, puriss., meets analytical specification of Ph. Eur., BP, NF
Millipore
Saccharose, suitable for microbiology, ACS reagent, ≥99.0%
Supelco
Saccharose, analytical standard, for enzymatic assay kit SCA20
Saccharose, European Pharmacopoeia (EP) Reference Standard