- High-throughput chemical modification of oligonucleotides for systematic structure-activity relationship evaluation.
High-throughput chemical modification of oligonucleotides for systematic structure-activity relationship evaluation.
Bioconjugate chemistry (2014-11-15)
Daniel Zewge, Francis Gosselin, Denise M Kenski, Jenny Li, Vasant Jadhav, Yu Yuan, Sandhya S Nerurkar, David M Tellers, W Michael Flanagan, Ian W Davies
PMID25398098
ZUSAMMENFASSUNG
Chemical modification of siRNA is achieved in a high-throughput manner (96-well plate format) by copper catalyzed azide-alkyne cycloadditions. This transformation can be performed in one synthetic operation at up to four positions with complete specificity, good yield, and acceptable purity. As demonstrated here, this approach extends the current synthetic options for oligonucleotide modifications and simultaneously facilitates the systematic, rapid biological evaluation of modified siRNA.
MATERIALIEN
Produktnummer
Marke
Produktbeschreibung
Sigma-Aldrich
Dichlormethan, HPLC Plus, for HPLC, GC, and residue analysis, ≥99.9%, contains 50-150 ppm amylene as stabilizer
Sigma-Aldrich
Methanol, suitable for HPLC, gradient grade, suitable as ACS-grade LC reagent, ≥99.9%
Sigma-Aldrich
Zitronensäure, meets analytical specification of Ph. Eur., BP, USP, E330, anhydrous, 99.5-100.5% (based on anhydrous substance)