Ugrás a tartalomra
Merck

725684

Sigma-Aldrich

Poly(ethylene glycol) dimethacrylate

average MN 10,000, cross-linking reagent polymerization reactions, methacrylate, ≤1, 500 ppm MEHQ as inhibitor (may contain)

Szinonimák:

Polyethylene glycol, PEG dimethacrylate

Bejelentkezésa Szervezeti és Szerződéses árazás megtekintéséhez


About This Item

Lineáris képlet:
C3H5C(O)(OCH2CH2)nOC(O)C3H5
CAS-szám:
MDL-szám:
UNSPSC kód:
12162002
NACRES:
NA.23

Terméknév

Poly(ethylene glycol) dimethacrylate, average Mn 10,000, contains MEHQ as inhibitor

Forma

powder

molekulatömeg

average Mn 10,000

tartalmaz

MEHQ as inhibitor
≤1,500 ppm MEHQ as inhibitor (may contain)

reakcióalkalmasság

reagent type: cross-linking reagent
reaction type: Polymerization Reactions

bp

>200 °C/2 mmHg (lit.)

átmeneti hőmérséklet

Tm 56-61 °C

Mw/Mn

≤1.1

Ω-end

methacrylate

α-end

methacrylate

polimer felépítés

shape: linear
functionality: homobifunctional

tárolási hőmérséklet

−20°C

SMILES string

OCCO.CC(=C)C(O)=O

InChI

1S/C10H14O4/c1-7(2)9(11)13-5-6-14-10(12)8(3)4/h1,3,5-6H2,2,4H3

Nemzetközi kémiai azonosító kulcs

STVZJERGLQHEKB-UHFFFAOYSA-N

Looking for similar products? Látogasson el ide Útmutató a termékösszehasonlításhoz

Elkészítési megjegyzés

Synthesized with an initial concentration of ≤1,500 ppm MEHQ

Tárolási osztály kódja

11 - Combustible Solids

WGK

WGK 1


Válasszon a legfrissebb verziók közül:

Analitikai tanúsítványok (COA)

Lot/Batch Number

Nem találja a megfelelő verziót?

Ha egy adott verzióra van szüksége, a tétel- vagy cikkszám alapján rákereshet egy adott tanúsítványra.

Már rendelkezik ezzel a termékkel?

Az Ön által nemrégiben megvásárolt termékekre vonatkozó dokumentumokat a Dokumentumtárban találja.

Dokumentumtár megtekintése

Craig Halberstadt et al.
Methods in molecular biology (Clifton, N.J.), 1001, 279-287 (2013-03-16)
Delivery of cells to organs has primarily relied on formulating the cells in a nonviscous liquid carrier. We have developed a methodology to isolate selected renal cells (SRC) that have provided functional stability to damaged kidneys in preclinical models (Kelley
Albert H Park et al.
The Laryngoscope, 123(4), 1043-1048 (2013-03-21)
To determine the resorption rate and biocompatibility characteristics of novel cross-linked hydrogel ventilation tubes and varied formulations of polyester ventilation tubes in a Chinchilla model. Animal Study. Three cross-linked glycosaminoglycan hydrogel ventilation tubes fabricated by cross-linking thiol-modified chondroitin sulfate or
Hiroaki Onoe et al.
Nature materials, 12(6), 584-590 (2013-04-02)
Artificial reconstruction of fibre-shaped cellular constructs could greatly contribute to tissue assembly in vitro. Here we show that, by using a microfluidic device with double-coaxial laminar flow, metre-long core-shell hydrogel microfibres encapsulating ECM proteins and differentiated cells or somatic stem
Katarzyna Kotynia et al.
Polimery w medycynie, 43(1), 21-28 (2013-07-03)
PURPOSE OF JOB: Currently, there isa need to increase comfort and visual acuity man. Simultaneously improving biocompatibility and minimizing the impact of the material on the physiology of the cornea is the primary driving force behind the evolution of materials
Kwanghun Chung et al.
Nature methods, 10(6), 508-513 (2013-06-01)
With potential relevance for brain-mapping work, hydrogel-based structures can now be built from within biological tissue to allow subsequent removal of lipids without mechanical disassembly of the tissue. This process creates a tissue-hydrogel hybrid that is physically stable, that preserves

Cikkek

Scaffold patterning with poly(ethylene glycol)-based hydrogels for cell presence in 2D and 3D environments on photoactive substrates.

Hydrogel-based biomaterials for cell delivery and tissue regeneration applications are discussed.

In the past two decades, tissue engineering and regenerative medicine have become important interdisciplinary fields that span biology, chemistry, engineering, and medicine.

Progress in biotechnology fields such as tissue engineering and drug delivery is accompanied by an increasing demand for diverse functional biomaterials. One class of biomaterials that has been the subject of intense research interest is hydrogels, because they closely mimic the natural environment of cells, both chemically and physically and therefore can be used as support to grow cells. This article specifically discusses poly(ethylene glycol) (PEG) hydrogels, which are good for biological applications because they do not generally elicit an immune response. PEGs offer a readily available, easy to modify polymer for widespread use in hydrogel fabrication, including 2D and 3D scaffold for tissue culture. The degradable linkages also enable a variety of applications for release of therapeutic agents.

Összes mutatása

Tudóscsoportunk valamennyi kutatási területen rendelkezik tapasztalattal, beleértve az élettudományt, az anyagtudományt, a kémiai szintézist, a kromatográfiát, az analitikát és még sok más területet.

Lépjen kapcsolatba a szaktanácsadással