Pular para o conteúdo
Merck

Defects in optineurin- and myosin VI-mediated cellular trafficking in amyotrophic lateral sclerosis.

Human molecular genetics (2015-04-11)
Vinod Sundaramoorthy, Adam K Walker, Vanessa Tan, Jennifer A Fifita, Emily P Mccann, Kelly L Williams, Ian P Blair, Gilles J Guillemin, Manal A Farg, Julie D Atkin
RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder primarily affecting motor neurons. Mutations in optineurin cause a small proportion of familial ALS cases, and wild-type (WT) optineurin is misfolded and forms inclusions in sporadic ALS patient motor neurons. However, it is unknown how optineurin mutation or misfolding leads to ALS. Optineurin acts an adaptor protein connecting the molecular motor myosin VI to secretory vesicles and autophagosomes. Here, we demonstrate that ALS-linked mutations p.Q398X and p.E478G disrupt the association of optineurin with myosin VI, leading to an abnormal diffuse cytoplasmic distribution, inhibition of secretory protein trafficking, endoplasmic reticulum (ER) stress and Golgi fragmentation in motor neuron-like NSC-34 cells. We also provide further insight into the role of optineurin as an autophagy receptor. WT optineurin associated with lysosomes and promoted autophagosome fusion to lysosomes in neuronal cells, implying that it mediates trafficking of lysosomes during autophagy in association with myosin VI. However, either expression of ALS mutant optineurin or small interfering RNA-mediated knockdown of endogenous optineurin blocked lysosome fusion to autophagosomes, resulting in autophagosome accumulation. Together these results indicate that ALS-linked mutations in optineurin disrupt myosin VI-mediated intracellular trafficking processes. In addition, in control human patient tissues, optineurin displayed its normal vesicular localization, but in sporadic ALS patient tissues, vesicles were present in a significantly decreased proportion of motor neurons. Optineurin binding to myosin VI was also decreased in tissue lysates from sporadic ALS spinal cords. This study therefore links several previously described pathological mechanisms in ALS, including defects in autophagy, fragmentation of the Golgi and induction of ER stress, to disruption of optineurin function. These findings also indicate that optineurin-myosin VI dysfunction is a common feature of both sporadic and familial ALS.

MATERIAIS
Número do produto
Marca
Descrição do produto

Sigma-Aldrich
Dodecilsulfato de sódio, BioReagent, suitable for electrophoresis, for molecular biology, ≥98.5% (GC)
Sigma-Aldrich
Dodecilsulfato de sódio, ≥99.0% (GC), dust-free pellets
Sigma-Aldrich
Cloreto de sódio, for molecular biology, DNase, RNase, and protease, none detected, ≥99% (titration)
Sigma-Aldrich
Ureia, powder, BioReagent, for molecular biology, suitable for cell culture
Sigma-Aldrich
Sodium chloride solution, 0.9% in water, BioXtra, suitable for cell culture
Sigma-Aldrich
Fluoreto de fenilmetanosulfonil, ≥98.5% (GC)
Sigma-Aldrich
Dodecilsulfato de sódio, BioUltra, for molecular biology, 10% in H2O
Sigma-Aldrich
Cloreto de sódio, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99%
Sigma-Aldrich
Sodium chloride solution, 5 M in H2O, BioReagent, for molecular biology, suitable for cell culture
SAFC
Sodium chloride solution, 5 M
Sigma-Aldrich
Urea solution, BioUltra, ~8 M in H2O
Supelco
Urea, 8 M (after reconstitution with 16 mL high purity water)
Sigma-Aldrich
Dodecilsulfato de sódio, BioUltra, for molecular biology, 20% in H2O
Sigma-Aldrich
Dodecilsulfato de sódio, BioUltra, for molecular biology, ≥99.0% (GC)
Sigma-Aldrich
Sodium chloride solution, BioUltra, for molecular biology, ~5 M in H2O
Sigma-Aldrich
Fluoreto de fenilmetanosulfonil, ≥99.0% (T)
Sigma-Aldrich
Cloreto de sódio, 99.999% trace metals basis
Sigma-Aldrich
Cloreto de sódio, BioUltra, for molecular biology, ≥99.5% (AT)
Sigma-Aldrich
Ureia, BioXtra, pH 7.5-9.5 (20 °C, 5 M in H2O)
Supelco
Dodecilsulfato de sódio, dust-free pellets, suitable for electrophoresis, for molecular biology, ≥99.0% (GC)
Sigma-Aldrich
Ureia, BioUltra, for molecular biology, 99% (T)
Sigma-Aldrich
Dodecilsulfato de sódio, ≥98.0% (GC)
Sigma-Aldrich
Ureia, suitable for electrophoresis
Sigma-Aldrich
Dodecilsulfato de sódio, ACS reagent, ≥99.0%
Sigma-Aldrich
Ureia, ACS reagent, 99.0-100.5%
Sigma-Aldrich
Cloreto de sódio, BioXtra, ≥99.5% (AT)
Sigma-Aldrich
Ureia, meets USP testing specifications
Sigma-Aldrich
Dodecilsulfato de sódio, ReagentPlus®, ≥98.5% (GC)
Sigma-Aldrich
Cloreto de sódio, BioPerformance Certified, ≥99% (titration), suitable for insect cell culture, suitable for plant cell culture
Sigma-Aldrich
Dodecilsulfato de sódio, tested according to NF, mixture of sodium alkyl sulfates consisting mainly of sodium dodecyl sulfate