Passa al contenuto
Merck

Metabolism of propionic acid to a novel acyl-coenzyme A thioester by mammalian cell lines and platelets.

Journal of lipid research (2014-11-27)
Nathaniel W Snyder, Sankha S Basu, Andrew J Worth, Clementina Mesaros, Ian A Blair
ABSTRACT

Metabolism of propionate involves the activated acyl-thioester propionyl-CoA intermediate. We employed LC-MS/MS, LC-selected reaction monitoring/MS, and LC-high-resolution MS to investigate metabolism of propionate to acyl-CoA intermediates. We discovered that propionyl-CoA can serve as a precursor to the direct formation of a new six-carbon mono-unsaturated acyl-CoA. Time course and dose-response studies in human hepatocellular carcinoma HepG2 cells demonstrated that the six-carbon mono-unsaturated acyl-CoA was propionate-dependent and underwent further metabolism over time. Studies utilizing [(13)C1]propionate and [(13)C3]propionate suggested a mechanism of fatty acid synthesis, which maintained all six-carbon atoms from two propionate molecules. Metabolism of 2,2-[(2)H2]propionate to the new six-carbon mono-unsaturated acyl-CoA resulted in the complete loss of two deuterium atoms, indicating modification at C2 of the propionyl moiety. Coelution experiments and isotopic tracer studies confirmed that the new acyl-CoA was trans-2-methyl-2-pentenoyl-CoA. Acyl-CoA profiles following treatment of HepG2 cells with mono-unsaturated six-carbon fatty acids also supported this conclusion. Similar results were obtained with human platelets, mouse hepatocellular carcinoma Hepa1c1c7 cells, human bronchoalveolar carcinoma H358 cells, and human colon adenocarcinoma LoVo cells. Interestingly, trans-2-methyl-2-pentenoyl-CoA corresponds to a previously described acylcarnitine tentatively described in patients with propionic and methylmalonic acidemia. We have proposed a mechanism for this metabolic route consistent with all of the above findings.

MATERIALI
N° Catalogo
Marchio
Descrizione del prodotto

Sigma-Aldrich
Acetonitrile, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Metanolo, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Dimetil solfossido, Hybri-Max, sterile-filtered, BioReagent, suitable for hybridoma, ≥99.7%
Sigma-Aldrich
2-Propanolo, suitable for HPLC, 99.9%
Sigma-Aldrich
Dimetil solfossido, ACS reagent, ≥99.9%
Sigma-Aldrich
Dimetil solfossido
Sigma-Aldrich
2-Propanolo, ACS reagent, ≥99.5%
Sigma-Aldrich
Metanolo, ACS reagent, ≥99.8%
Sigma-Aldrich
Acido acetico, glacial, ACS reagent, ≥99.7%
Sigma-Aldrich
Dimetil solfossido, suitable for HPLC, ≥99.7%
Sigma-Aldrich
Acetonitrile, HPLC Plus, ≥99.9%
Sigma-Aldrich
Dimetil solfossido, sterile-filtered, BioPerformance Certified, meets EP, USP testing specifications, suitable for hybridoma
Sigma-Aldrich
Acido acetico, glacial, ReagentPlus®, ≥99%
Sigma-Aldrich
Dimetil solfossido, ReagentPlus®, ≥99.5%
Sigma-Aldrich
Acido formico, reagent grade, ≥95%
Sigma-Aldrich
Metanolo, HPLC Plus, ≥99.9%
Sigma-Aldrich
Acido formico, ACS reagent, ≥96%
Sigma-Aldrich
Dimetil solfossido, ≥99.5% (GC), suitable for plant cell culture
Sigma-Aldrich
Acetonitrile, ACS reagent, ≥99.5%
Sigma-Aldrich
Formato di ammonio, reagent grade, 97%
Sigma-Aldrich
2-Propanolo, HPLC Plus, for HPLC, GC, and residue analysis, 99.9%
Sigma-Aldrich
2-Propanolo, meets USP testing specifications
Sigma-Aldrich
Acetonitrile, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Acido acetico, glacial, ≥99.99% trace metals basis
Sigma-Aldrich
Metanolo, suitable for HPLC, gradient grade, suitable as ACS-grade LC reagent, ≥99.9%
Sigma-Aldrich
Acido acetico, suitable for HPLC
Sigma-Aldrich
2-Propanolo, Laboratory Reagent, ≥99.5%
Sigma-Aldrich
Metanolo, Laboratory Reagent, ≥99.6%
Sigma-Aldrich
Formato di ammonio, ≥99.995% trace metals basis
Sigma-Aldrich
Acido formico, ACS reagent, ≥88%