Passa al contenuto
Merck

Enhanced brain delivery of lamotrigine with Pluronic(®) P123-based nanocarrier.

International journal of nanomedicine (2014-08-26)
Jian-Sheng Liu, Jian-Hong Wang, Jie Zhou, Xing-Hua Tang, Lan Xu, Teng Shen, Xun-Yi Wu, Zhen Hong
ABSTRACT

P-glycoprotein (P-gp) mediated drug efflux across the blood-brain barrier (BBB) is an important mechanism underlying poor brain penetration of certain antiepileptic drugs (AEDs). Nanomaterials, as drug carriers, can overcome P-gp activity and improve the targeted delivery of AEDs. However, their applications in the delivery of AEDs have not been adequately investigated. The objective of this study was to develop a nano-scale delivery system to improve the solubility and brain penetration of the antiepileptic drug lamotrigine (LTG). LTG-loaded Pluronic(®) P123 (P123) polymeric micelles (P123/LTG) were prepared by thin-film hydration, and brain penetration capability of the nanocarrier was evaluated. The mean encapsulating efficiency for the optimized formulation was 98.07%; drug-loading was 5.63%, and particle size was 18.73 nm. The solubility of LTG in P123/LTG can increase to 2.17 mg/mL, making it available as a solution. The in vitro release of LTG from P123LTG presented a sustained-release property. Compared with free LTG, the LTG-incorporated micelles accumulated more in the brain at 0.5, 1, and 4 hours after intravenous administration in rats. Pretreatment with systemic verapamil increased the rapid brain penetration of free LTG but not P123/LTG. Incorporating another P-gp substrate (Rhodamine 123) into P123 micelles also showed higher efficiency in penetrating the BBB in vitro and in vivo. These results indicated that P123 micelles have the potential to overcome the activity of P-gp expressed on the BBB and therefore show potential for the targeted delivery of AEDs. Future studies are necessary to further evaluate the appropriateness of the nanocarrier to enhance the efficacy of AEDs.

MATERIALI
N° Catalogo
Marchio
Descrizione del prodotto

Sigma-Aldrich
Acetonitrile, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Metanolo, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Dimetil solfossido, Hybri-Max, sterile-filtered, BioReagent, suitable for hybridoma, ≥99.7%
Sigma-Aldrich
Dimetil solfossido, ACS reagent, ≥99.9%
Sigma-Aldrich
Dimetil solfossido, for molecular biology
Sigma-Aldrich
Metanolo, ACS reagent, ≥99.8%
Sigma-Aldrich
Dimetil solfossido, suitable for HPLC, ≥99.7%
Sigma-Aldrich
Acetonitrile, HPLC Plus, ≥99.9%
Sigma-Aldrich
Dimetil solfossido, sterile-filtered, BioPerformance Certified, meets EP, USP testing specifications, suitable for hybridoma
Sigma-Aldrich
Dimetil solfossido, ReagentPlus®, ≥99.5%
Sigma-Aldrich
Metanolo, HPLC Plus, ≥99.9%
Sigma-Aldrich
Dimetil solfossido, ≥99.5% (GC), suitable for plant cell culture
Sigma-Aldrich
Ammonio acetato, ACS reagent, ≥97%
Sigma-Aldrich
Acetonitrile, ACS reagent, ≥99.5%
Sigma-Aldrich
DAPI, for nucleic acid staining
Sigma-Aldrich
Ammonio acetato, ≥99.99% trace metals basis
Sigma-Aldrich
Acetonitrile, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Metanolo, suitable for HPLC, gradient grade, suitable as ACS-grade LC reagent, ≥99.9%
Sigma-Aldrich
Metanolo, Laboratory Reagent, ≥99.6%
Sigma-Aldrich
Ammonio acetato, for molecular biology, ≥98%
Sigma-Aldrich
Metanolo, ACS spectrophotometric grade, ≥99.9%
Sigma-Aldrich
Ammonium acetate solution, for molecular biology, 7.5 M
Sigma-Aldrich
Dimetil solfossido, BioUltra, for molecular biology, ≥99.5% (GC)
Sigma-Aldrich
Metanolo, ACS reagent, ≥99.8%
Sigma-Aldrich
Metanolo, BioReagent, ≥99.93%
Sigma-Aldrich
Metanolo, Absolute - Acetone free
USP
Metanolo, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Acetonitrile, biotech. grade, ≥99.93%
Sigma-Aldrich
Dimetil solfossido, PCR Reagent
Sigma-Aldrich
(±)-Verapamil hydrochloride, ≥99% (titration), powder