Passa al contenuto
Merck

Long-chain acylcarnitine content determines the pattern of energy metabolism in cardiac mitochondria.

Molecular and cellular biochemistry (2014-06-01)
Marina Makrecka, Janis Kuka, Kristine Volska, Unigunde Antone, Eduards Sevostjanovs, Helena Cirule, Solveiga Grinberga, Osvalds Pugovics, Maija Dambrova, Edgars Liepinsh
ABSTRACT

In the heart, a nutritional state (fed or fasted) is characterized by a unique energy metabolism pattern determined by the availability of substrates. Increased availability of acylcarnitines has been associated with decreased glucose utilization; however, the effects of long-chain acylcarnitines on glucose metabolism have not been previously studied. We tested how changes in long-chain acylcarnitine content regulate the metabolism of glucose and long-chain fatty acids in cardiac mitochondria in fed and fasted states. We examined the concentrations of metabolic intermediates in plasma and cardiac tissues under fed and fasted states. The effects of substrate availability and their competition for energy production at the mitochondrial level were studied in isolated rat cardiac mitochondria. The availability of long-chain acylcarnitines in plasma reflected their content in cardiac tissue in the fed and fasted states, and acylcarnitine content in the heart was fivefold higher in fasted state compared to the fed state. In substrate competition experiments, pyruvate and fatty acid metabolites effectively competed for the energy production pathway; however, only the physiological content of acylcarnitine significantly reduced pyruvate and lactate oxidation in mitochondria. The increased availability of long-chain acylcarnitine significantly reduced glucose utilization in isolated rat heart model and in vivo. Our results demonstrate that changes in long-chain acylcarnitine contents could orchestrate the interplay between the metabolism of pyruvate-lactate and long-chain fatty acids, and thus determine the pattern of energy metabolism in cardiac mitochondria.

MATERIALI
N° Catalogo
Marchio
Descrizione del prodotto

Sigma-Aldrich
Acetonitrile, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Metanolo, suitable for HPLC, ≥99.9%
Sigma-Aldrich
2-Propanolo, suitable for HPLC, 99.9%
Sigma-Aldrich
2-Propanolo, ACS reagent, ≥99.5%
Sigma-Aldrich
Metanolo, ACS reagent, ≥99.8%
Sigma-Aldrich
Potassio cloruro, ACS reagent, 99.0-100.5%
Sigma-Aldrich
Fosfato di potassio, ACS reagent, ≥99.0%
Sigma-Aldrich
Acetonitrile, HPLC Plus, ≥99.9%
Sigma-Aldrich
Metanolo, HPLC Plus, ≥99.9%
Sigma-Aldrich
Cloruro di magnesio, ACS reagent, 99.0-102.0%
Sigma-Aldrich
Ammonio acetato, ACS reagent, ≥97%
Sigma-Aldrich
Cloruro di calcio, ACS reagent, ≥99%
Sigma-Aldrich
Ammonium bicarbonate, ReagentPlus®, ≥99.0%
Sigma-Aldrich
Acetonitrile, ACS reagent, ≥99.5%
Sigma-Aldrich
2-Propanolo, HPLC Plus, for HPLC, GC, and residue analysis, 99.9%
Sigma-Aldrich
Imidazolo, ReagentPlus®, 99%
Sigma-Aldrich
Ammonio acetato, ≥99.99% trace metals basis
Sigma-Aldrich
Sodio cloruro, for molecular biology, DNase, RNase, and protease, none detected, ≥99% (titration)
Sigma-Aldrich
Fosfato di potassio, powder, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99.0%
Sigma-Aldrich
2-Propanolo, meets USP testing specifications
Sigma-Aldrich
Acetonitrile, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Cloruro di calcio, ReagentPlus®, ≥99.0%
Sigma-Aldrich
Metanolo, suitable for HPLC, gradient grade, suitable as ACS-grade LC reagent, ≥99.9%
Sigma-Aldrich
Potassio cloruro, puriss., meets analytical specification of Ph. Eur., BP, USP, FCC, E508, 99-100.5% (AT), ≤0.0001% Al
Sigma-Aldrich
Potassio cloruro, for molecular biology, ≥99.0%
Sigma-Aldrich
Sodio cloruro, 5 M in H2O, BioReagent, for molecular biology, suitable for cell culture
Sigma-Aldrich
Sodio cloruro, 0.9% in water, BioXtra, suitable for cell culture
Sigma-Aldrich
Sodio cloruro, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99%
Sigma-Aldrich
2-Propanolo, Laboratory Reagent, ≥99.5%
Sigma-Aldrich
Potassio cloruro, powder, BioReagent, suitable for cell culture, suitable for insect cell culture, ≥99.0%