Passa al contenuto
Merck

Actin dynamics is rapidly regulated by the PTEN and PIP2 signaling pathways leading to myocyte hypertrophy.

American journal of physiology. Heart and circulatory physiology (2014-09-28)
Jieli Li, Elaine J Tanhehco, Brenda Russell
ABSTRACT

Mature cardiac myocytes are terminally differentiated, and the heart has limited capacity to replace lost myocytes. Thus adaptation of myocyte size plays an important role in the determination of cardiac function. The hypothesis tested is that regulation of the dynamic exchange of actin leads to cardiac hypertrophy. ANG II was used as a hypertrophic stimulant in mouse heart and neonatal rat ventricular myocytes (NRVMs) in culture for assessment of a mechanism for regulation of actin dynamics by phosphatidylinositol 4,5-bisphosphate (PIP2). Actin dynamics in NRVMs rapidly increased in a PIP2-dependent manner, measured by imaging and fluorescence recovery after photobleaching (FRAP). A significant increase in PIP2 levels was found by immunoblotting in both adult mouse heart tissue and cultured NRVMs. Inhibition of phosphatase and tensin homolog (PTEN) in NRVMs markedly blunted ANG II-induced increases in actin dynamics, the PIP2 level, and cell size. Furthermore, PTEN activity was dramatically upregulated in ANG II-treated NRVMs but downregulated when PTEN inhibitors were used. The time course of the rise in the PIP2 level was inversely related to the fall in the PIP3 level, which was significant by 30 min in ANG II-treated NRVMs. However, significant translocation of PTEN to the plasma membrane occurred by 10 min, suggesting a crucial initial step for PTEN for the cellular responses to ANG II. In conclusion, PTEN and PIP2 signaling may play an important role in myocyte hypertrophy by the regulation of actin filament dynamics, which is induced by ANG II stimulation.

MATERIALI
N° Catalogo
Marchio
Descrizione del prodotto

Sigma-Aldrich
Angiotensina II umana, ≥93% (HPLC), powder
Sigma-Aldrich
Sodio cloruro, for molecular biology, DNase, RNase, and protease, none detected, ≥99% (titration)
Sigma-Aldrich
Cloruro di magnesio, for molecular biology, 1.00 M±0.01 M
Sigma-Aldrich
Cloruro di magnesio, anhydrous, ≥98%
Sigma-Aldrich
DL-Dithiothreitol solution, BioUltra, for molecular biology, ~1 M in H2O
Supelco
DL-Dithiothreitol solution, 1 M in H2O
Sigma-Aldrich
Sodio cloruro, 0.9% in water, BioXtra, suitable for cell culture
Sigma-Aldrich
Sodio cloruro, 5 M in H2O, BioReagent, for molecular biology, suitable for cell culture
Sigma-Aldrich
Sodio cloruro, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99%
SAFC
Sodio cloruro, 5 M
Sigma-Aldrich
Cloruro di magnesio, powder, <200 μm
Sigma-Aldrich
Sodio cloruro, BioUltra, for molecular biology, ~5 M in H2O
Sigma-Aldrich
Sodio cloruro, 99.999% trace metals basis
Sigma-Aldrich
Sodio cloruro, BioUltra, for molecular biology, ≥99.5% (AT)
Sigma-Aldrich
Cloruro di magnesio, BioUltra, for molecular biology, 2 M in H2O
Sigma-Aldrich
Cloruro di magnesio, BioReagent, suitable for insect cell culture, ≥97.0%
Sigma-Aldrich
Cloruro di magnesio, PCR Reagent, 25 mM MgCI2 solution for PCR
Millipore
ProteoExtract® Subcellular Proteome Extraction Kit
Sigma-Aldrich
Cloruro di magnesio, AnhydroBeads, −10 mesh, 99.9% trace metals basis
Sigma-Aldrich
Sodio cloruro, BioXtra, ≥99.5% (AT)
Sigma-Aldrich
Sodio cloruro, BioPerformance Certified, ≥99% (titration), suitable for insect cell culture, suitable for plant cell culture
Sigma-Aldrich
Sodio cloruro, AnhydroBeads, −10 mesh, 99.999% trace metals basis
Sigma-Aldrich
Sodium chloride-35Cl, 99 atom % 35Cl
Sigma-Aldrich
Sodio cloruro, meets analytical specification of Ph. Eur., BP, USP, 99.0-100.5%
Sigma-Aldrich
Anticorpo anti-PTEN, clone 6H2.1, clone 6H2.1, Upstate®, from mouse
Sigma-Aldrich
Cloruro di magnesio, AnhydroBeads, −10 mesh, 99.99% trace metals basis
Sigma-Aldrich
Sodio cloruro, 5 M
Sigma-Aldrich
Sodio cloruro, random crystals, optical grade, 99.9% trace metals basis
Sigma-Aldrich
Cloruro di magnesio, 0.1 M
Sigma-Aldrich
Sodio cloruro, 0.85%