Pular para o conteúdo
Merck

Phage-display-guided nanocarrier targeting to atheroprone vasculature.

ACS nano (2015-03-15)
Lucas H Hofmeister, Sue Hyun Lee, Allison E Norlander, Kim Ramil C Montaniel, Wei Chen, David G Harrison, Hak-Joon Sung
RESUMO

In regions of the circulation where vessels are straight and unbranched, blood flow is laminar and unidirectional. In contrast, at sites of curvature, branch points, and regions distal to stenoses, blood flow becomes disturbed. Atherosclerosis preferentially develops in these regions of disturbed blood flow. Current therapies for atherosclerosis are systemic and may not sufficiently target these atheroprone regions. In this study, we sought to leverage the alterations on the luminal surface of endothelial cells caused by this atheroprone flow for nanocarrier targeting. In vivo phage display was used to discover unique peptides that selectively bind to atheroprone regions in the mouse partial carotid artery ligation model. The peptide GSPREYTSYMPH (PREY) was found to bind 4.5-fold more avidly to the region of disturbed flow and was used to form targeted liposomes. When administered intravenously, PREY-targeted liposomes preferentially accumulated in endothelial cells in the partially occluded carotid artery and other areas of disturbed flow. Proteomic analysis and immunoblotting indicated that fibronectin and Filamin-A were preferentially bound by PREY nanocarriers in vessels with disturbed flow. In additional experiments, PREY nanocarriers were used therapeutically to deliver the nitric oxide synthase cofactor tetrahydrobiopterin (BH4), which we have previously shown to be deficient in regions of disturbed flow. This intervention increased vascular BH4 and reduced vascular superoxide in the partially ligated artery in wild-type mice and reduced plaque burden in the partially ligated left carotid artery of fat fed atheroprone mice (ApoE(-/-)). Targeting atheroprone sites of the circulation with functionalized nanocarriers provides a promising approach for prevention of early atherosclerotic lesion formation.

MATERIAIS
Número do produto
Marca
Descrição do produto

Sigma-Aldrich
Colesterol, Sigma Grade, ≥99%
Sigma-Aldrich
N-Hydroxysuccinimide, 98%
Sigma-Aldrich
Triton X-100, laboratory grade
Sigma-Aldrich
L-Glutamina, meets USP testing specifications, suitable for cell culture, 99.0-101.0%, from non-animal source
Sigma-Aldrich
L-Glutamina
Sigma-Aldrich
Metanol, anhydrous, 99.8%
Sigma-Aldrich
Colesterol, powder, BioReagent, suitable for cell culture, ≥99%
SAFC
L-Glutamina
Avanti
16:0 PC (DPPC), Avanti Research - A Croda Brand
Sigma-Aldrich
Fluorescein, for fluorescence, free acid
Sigma-Aldrich
Colesterol, from sheep wool, ≥92.5% (GC), powder
Sigma-Aldrich
Clorofórmio, anhydrous, ≥99%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
Clorofórmio, anhydrous, contains amylenes as stabilizer, ≥99%
Sigma-Aldrich
L-Glutamina, BioUltra, ≥99.5% (NT)
Sigma-Aldrich
SyntheChol® NS0 Supplement, 500 ×, synthetic cholesterol, animal component-free, aqueous solution, sterile-filtered, suitable for cell culture
Sigma-Aldrich
Amylamine, 99%
SAFC
Colesterol, SyntheChol®
Sigma-Aldrich
Clorofórmio, ≥99%, PCR Reagent, contains amylenes as stabilizer
Sigma-Aldrich
L-Glutamina, γ-irradiated, BioXtra, suitable for cell culture
Sigma-Aldrich
L-Glutamina
Sigma-Aldrich
Bicinchoninic acid disodium salt hydrate, ≥98% (HPLC)
Sigma-Aldrich
Colesterol, from lanolin, ≥99.0% (GC)
Sigma-Aldrich
Metanol, NMR reference standard
Sigma-Aldrich
Methanol solution, NMR reference standard, 4% in methanol-d4 (99.8 atom % D), NMR tube size 3 mm × 8 in.
Sigma-Aldrich
Amylamine, ≥99%, FG
SAFC
Colesterol, from sheep wool, Controlled origin, meets USP/NF testing specifications
Sigma-Aldrich
Methanol-12C, 99.95 atom % 12C
Sigma-Aldrich
Amylamines, mixture of isomers, ≥98%
Avanti
16:0 Caproylamine PE, Avanti Research - A Croda Brand 870125P, powder