Pular para o conteúdo
Merck

Differential Role for Trehalose Metabolism in Salt-Stressed Maize.

Plant physiology (2015-08-14)
Clémence Henry, Samuel W Bledsoe, Cara A Griffiths, Alec Kollman, Matthew J Paul, Soulaiman Sakr, L Mark Lagrimini
RESUMO

Little is known about how salt impacts primary metabolic pathways of C4 plants, particularly related to kernel development and seed set. Osmotic stress was applied to maize (Zea mays) B73 by irrigation with increasing concentrations of NaCl from the initiation of floral organs until 3 d after pollination. At silking, photosynthesis was reduced to only 2% of control plants. Salt treatment was found to reduce spikelet growth, silk growth, and kernel set. Osmotic stress resulted in higher concentrations of sucrose (Suc) and hexose sugars in leaf, cob, and kernels at silking, pollination, and 3 d after pollination. Citric acid cycle intermediates were lower in salt-treated tissues, indicating that these sugars were unavailable for use in respiration. The sugar-signaling metabolite trehalose-6-phosphate was elevated in leaf, cob, and kernels at silking as a consequence of salt treatment but decreased thereafter even as Suc levels continued to rise. Interestingly, the transcripts of trehalose pathway genes were most affected by salt treatment in leaf tissue. On the other hand, transcripts of the SUCROSE NONFERMENTING-RELATED KINASE1 (SnRK1) marker genes were most affected in reproductive tissue. Overall, both source and sink strength are reduced by salt, and the data indicate that trehalose-6-phosphate and SnRK1 may have different roles in source and sink tissues. Kernel abortion resulting from osmotic stress is not from a lack of carbohydrate reserves but from the inability to utilize these energy reserves.

MATERIAIS
Número do produto
Marca
Descrição do produto

Sigma-Aldrich
Magnesium chloride solution, for molecular biology, 1.00 M±0.01 M
Sigma-Aldrich
Cloreto de magnésio, anhydrous, ≥98%
Sigma-Aldrich
DL-Ditiotreitol, BioUltra, for molecular biology, ~1 M in H2O
Supelco
DL-Ditiotreitol, 1 M in H2O
Sigma-Aldrich
Fluoreto de fenilmetanosulfonil, ≥98.5% (GC)
Sigma-Aldrich
Ácido etilenoglicol-bis(2-aminoetiléter)-N,N,N′,N′-tetracético, for molecular biology, ≥97.0%
Sigma-Aldrich
Coquetel Inibidor de Protease, for plant cell and tissue extracts, DMSO solution
Sigma-Aldrich
Ethylenediaminetetraacetic acid solution, 0.02% in DPBS (0.5 mM), sterile-filtered, BioReagent, suitable for cell culture
Sigma-Aldrich
Sodium pyrophosphate tetrabasic, ≥95%
Sigma-Aldrich
Cloreto de magnésio, powder, <200 μm
Sigma-Aldrich
Ethylenediaminetetraacetic acid, anhydrous, crystalline, BioReagent, suitable for cell culture
Sigma-Aldrich
Ethylenediaminetetraacetic acid, 99.995% trace metals basis
Sigma-Aldrich
Fluoreto de fenilmetanosulfonil, ≥99.0% (T)
Sigma-Aldrich
Magnesium chloride solution, BioUltra, for molecular biology, 2 M in H2O
Sigma-Aldrich
Cloreto de magnésio, BioReagent, suitable for insect cell culture, ≥97.0%
Sigma-Aldrich
Ethylenediaminetetraacetic acid, ACS reagent, 99.4-100.6%, powder
Sigma-Aldrich
Magnesium chloride solution, PCR Reagent, 25 mM MgCI2 solution for PCR
Sigma-Aldrich
Cloreto de magnésio, AnhydroBeads, −10 mesh, 99.9% trace metals basis
Sigma-Aldrich
Benzamidine, ≥95.0%
Sigma-Aldrich
Cloreto de magnésio, AnhydroBeads, −10 mesh, 99.99% trace metals basis
Sigma-Aldrich
Ethylenediaminetetraacetic acid, anhydrous, BioUltra, ≥99% (titration)
Sigma-Aldrich
Ácido etilenoglicol-bis(2-aminoetiléter)-N,N,N′,N′-tetracético, ≥97.0%
Sigma-Aldrich
Magnesium chloride solution, 0.1 M
Sigma-Aldrich
Ethylenediaminetetraacetic acid, purified grade, ≥98.5%, powder
Sigma-Aldrich
Magnesium chloride solution, BioUltra, for molecular biology, ~1 M in H2O
Sigma-Aldrich
Ácido etilenoglicol-bis(2-aminoetiléter)-N,N,N′,N′-tetracético, BioXtra, ≥97 .0%
Sigma-Aldrich
Magnesium chloride solution, BioUltra, for molecular biology, ~0.025 M in H2O