Pular para o conteúdo
Merck

Molecular imprinted polymeric porous layers in open tubular capillaries for chiral separations.

Journal of chromatography. A (2014-06-18)
Chadin Kulsing, Radim Knob, Mirek Macka, Paul Junor, Reinhard I Boysen, Milton T W Hearn
RESUMO

A new method has been developed for the preparation of molecular imprinted polymers as porous layers in open tubular (MIP-PLOT) capillary column formats for use in chiral separations by capillary liquid chromatography. The synthesis was based on 'in-capillary' ultraviolet (UV) initiated polymerization using light emitting diodes (LEDs) in conjunction with the continuous delivery of the pre-polymerization reagents into the polymerization zone of the capillary using an automated capillary delivery device. The relationships between exposure times, UV-light intensity and polymer layer thickness have been determined, as well as the effects of reagent delivery rate and multiple LED exposures on the layer thickness for various compositions of pre-polymerization mixtures. The polymer surface morphology was investigated by scanning electron microscopy (SEM). The non-steroidal anti-inflammatory drug S-ketoprofen was used as the template for the preparation of the MIP imprinted PLOT coatings. The separation performance with the ketoprofen racemate was investigated by capillary liquid chromatography. In contrast to alternative methods, which require the use of expensive chiral selectors, the described MIP PLOT stationary phases used non-chiral polymer precursors to create enantioselective nano-cavities through molecular self-assembly processes. The described fabrication methods provide a new avenue to tailor-make chiral MIP-PLOT capillary columns for the separation of chiral compounds present in complex or racemic analyte mixtures of chemical and biological origin.

MATERIAIS
Número do produto
Marca
Descrição do produto

Sigma-Aldrich
Metanol, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Metanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Ácido acético, glacial, ACS reagent, ≥99.7%
Sigma-Aldrich
Ácido acético, glacial, ReagentPlus®, ≥99%
Sigma-Aldrich
Metanol, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Tolueno, ACS reagent, ≥99.5%
Sigma-Aldrich
Metanol, HPLC Plus, ≥99.9%
Sigma-Aldrich
Tolueno, suitable for HPLC, 99.9%
Sigma-Aldrich
Tolueno, HPLC Plus, for HPLC, GC, and residue analysis, ≥99.9%
Sigma-Aldrich
Ácido acético, glacial, ≥99.99% trace metals basis
Sigma-Aldrich
Metanol, suitable for HPLC, gradient grade, suitable as ACS-grade LC reagent, ≥99.9%
Sigma-Aldrich
Acetic acid solution, suitable for HPLC
Sigma-Aldrich
Metanol, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.8% (GC)
Sigma-Aldrich
Ácido acético, glacial, puriss., meets analytical specification of Ph. Eur., BP, USP, FCC, 99.8-100.5%
Sigma-Aldrich
Metanol, Laboratory Reagent, ≥99.6%
Sigma-Aldrich
Ácido acético, glacial, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.8%
Sigma-Aldrich
Tolueno, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.7% (GC)
Sigma-Aldrich
Tolueno, anhydrous, 99.8%
Sigma-Aldrich
Dimetacrilato de etilenoglicol, 98%, contains 90-110 ppm monomethyl ether hydroquinone as inhibitor
Sigma-Aldrich
Metanol, BioReagent, ≥99.93%
Sigma-Aldrich
Metanol, Absolute - Acetone free
Sigma-Aldrich
Metanol, ACS spectrophotometric grade, ≥99.9%
Sigma-Aldrich
Metanol, anhydrous, 99.8%
Sigma-Aldrich
Metanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Ácido acético, for luminescence, BioUltra, ≥99.5% (GC)
USP
Metanol, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
1-Dodecanol, reagent grade, 98%
Sigma-Aldrich
Tolueno, ACS reagent, ≥99.5%
Sigma-Aldrich
1-Dodecanol, ACS reagent, ≥98.0%
Sigma-Aldrich
Ácido acético, ≥99.5%, FCC, FG