Pular para o conteúdo
Merck
  • Pathogen detection in complex samples by quartz crystal microbalance sensor coupled to aptamer functionalized core-shell type magnetic separation.

Pathogen detection in complex samples by quartz crystal microbalance sensor coupled to aptamer functionalized core-shell type magnetic separation.

Analytica chimica acta (2014-12-04)
Veli C Ozalp, Gulay Bayramoglu, Zehra Erdem, M Yakup Arica
RESUMO

A quartz crystal microbalance sensor (QCM) was developed for sensitive and specific detection of Salmonella enterica serovar typhimurium cells in food samples by integrating a magnetic bead purification system. Although many sensor formats based on bioaffinity agents have been developed for sensitive and specific detection of bacterial cells, the development of robust sensor applications for food samples remained a challenging issue. A viable strategy would be to integrate QCM to a pre-purification system. Here, we report a novel and sensitive high throughput strategy which combines an aptamer-based magnetic separation system for rapid enrichment of target pathogens and a QCM analysis for specific and real-time monitoring. As a proof-of-concept study, the integration of Salmonella binding aptamer immobilized magnetic beads to the aptamer-based QCM system was reported in order to develop a method for selective detection of Salmonella. Since our magnetic separation system can efficiently capture cells in a relatively short processing time (less than 10 min), feeding captured bacteria to a QCM flow cell system showed specific detection of Salmonella cells at 100 CFU mL(-1) from model food sample (i.e., milk). Subsequent treatment of the QCM crystal surface with NaOH solution regenerated the aptamer-sensor allowing each crystal to be used several times.

MATERIAIS
Número do produto
Marca
Descrição do produto

Sigma-Aldrich
Tetra-hidrofurano, inhibitor-free, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Tolueno, ACS reagent, ≥99.5%
Sigma-Aldrich
Tetra-hidrofurano, contains 250 ppm BHT as inhibitor, ACS reagent, ≥99.0%
Sigma-Aldrich
Tolueno, suitable for HPLC, 99.9%
Sigma-Aldrich
Tolueno, HPLC Plus, for HPLC, GC, and residue analysis, ≥99.9%
Sigma-Aldrich
Bromine, ACS reagent, ≥99.5%
Sigma-Aldrich
Bromine, reagent grade
Sigma-Aldrich
Tolueno, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.7% (GC)
Sigma-Aldrich
Tetra-hidrofurano, anhydrous, ≥99.9%, inhibitor-free
Sigma-Aldrich
Trietilamina, BioUltra, ≥99.5% (GC)
Sigma-Aldrich
Tetra-hidrofurano, ReagentPlus®, ≥99.0%, contains 250 ppm BHT as inhibitor
Sigma-Aldrich
Glycidyl methacrylate, ≥97.0% (GC)
Sigma-Aldrich
Luperox® A75, Benzoyl peroxide, 75%, remainder water
Sigma-Aldrich
Tetra-hidrofurano, contains 250 ppm BHT as inhibitor, puriss. p.a., ACS reagent, reag. Ph. Eur., ≥99.9%
Sigma-Aldrich
Tolueno, anhydrous, 99.8%
Sigma-Aldrich
Tetra-hidrofurano, anhydrous, contains 250 ppm BHT as inhibitor, ≥99.9%
Sigma-Aldrich
Trietilamina, ≥99.5%
Sigma-Aldrich
Tolueno, ACS reagent, ≥99.5%
Sigma-Aldrich
Glycidyl methacrylate, 97%, contains 100 ppm monomethyl ether hydroquinone as inhibitor
Sigma-Aldrich
Trietilamina, ≥99%
Sigma-Aldrich
Tolueno, Laboratory Reagent, ≥99.3%
Sigma-Aldrich
Tetra-hidrofurano, ACS reagent, ≥99.0%, contains 250 ppm BHT as inhibitor
Sigma-Aldrich
Etilenodiamina, ReagentPlus®, ≥99%
Sigma-Aldrich
6-Mercaptohexanoic acid, 90%
Sigma-Aldrich
2,2′-Bipyridyl, ReagentPlus®, ≥99%
Sigma-Aldrich
Etilenodiamina, purified by redistillation, ≥99.5%
Sigma-Aldrich
Luperox® A75FP, Benzoyl peroxide, 75% remainder water, contains 25 wt. % water as stabilizer, 75%
Sigma-Aldrich
Trietilamina, ≥99.5%
Sigma-Aldrich
Trietilamina, puriss. p.a., ≥99.5% (GC)
Supelco
Tetra-hidrofurano, HPLC grade, ≥99.9%, inhibitor-free