Direkt zum Inhalt
Merck

Differential Role for Trehalose Metabolism in Salt-Stressed Maize.

Plant physiology (2015-08-14)
Clémence Henry, Samuel W Bledsoe, Cara A Griffiths, Alec Kollman, Matthew J Paul, Soulaiman Sakr, L Mark Lagrimini
ZUSAMMENFASSUNG

Little is known about how salt impacts primary metabolic pathways of C4 plants, particularly related to kernel development and seed set. Osmotic stress was applied to maize (Zea mays) B73 by irrigation with increasing concentrations of NaCl from the initiation of floral organs until 3 d after pollination. At silking, photosynthesis was reduced to only 2% of control plants. Salt treatment was found to reduce spikelet growth, silk growth, and kernel set. Osmotic stress resulted in higher concentrations of sucrose (Suc) and hexose sugars in leaf, cob, and kernels at silking, pollination, and 3 d after pollination. Citric acid cycle intermediates were lower in salt-treated tissues, indicating that these sugars were unavailable for use in respiration. The sugar-signaling metabolite trehalose-6-phosphate was elevated in leaf, cob, and kernels at silking as a consequence of salt treatment but decreased thereafter even as Suc levels continued to rise. Interestingly, the transcripts of trehalose pathway genes were most affected by salt treatment in leaf tissue. On the other hand, transcripts of the SUCROSE NONFERMENTING-RELATED KINASE1 (SnRK1) marker genes were most affected in reproductive tissue. Overall, both source and sink strength are reduced by salt, and the data indicate that trehalose-6-phosphate and SnRK1 may have different roles in source and sink tissues. Kernel abortion resulting from osmotic stress is not from a lack of carbohydrate reserves but from the inability to utilize these energy reserves.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
Natriumfluorid, ACS reagent, ≥99%
Sigma-Aldrich
Magnesiumchlorid -Lösung, for molecular biology, 1.00 M±0.01 M
Sigma-Aldrich
Magnesiumchlorid, anhydrous, ≥98%
Sigma-Aldrich
DL-Dithiothreitol -Lösung, BioUltra, for molecular biology, ~1 M in H2O
Supelco
DL-Dithiothreitol -Lösung, 1 M in H2O
Sigma-Aldrich
Phenylmethansulfonylfluorid, ≥98.5% (GC)
Sigma-Aldrich
Ethylenglykol-bis(2-aminoethylether)-N,N,N′,N′-Tetraessigsäure, for molecular biology, ≥97.0%
Sigma-Aldrich
Proteasehemmer-Cocktail, for plant cell and tissue extracts, DMSO solution
Sigma-Aldrich
Natriumpyrophosphat, ≥95%
Sigma-Aldrich
Ethylendiamintetraessigsäure -Lösung, 0.02% in DPBS (0.5 mM), sterile-filtered, BioReagent, suitable for cell culture
Sigma-Aldrich
Ethylendiamintetraessigsäure, anhydrous, crystalline, BioReagent, suitable for cell culture
Sigma-Aldrich
Magnesiumchlorid, powder, <200 μm
Sigma-Aldrich
Ethylendiamintetraessigsäure, 99.995% trace metals basis
Sigma-Aldrich
Phenylmethansulfonylfluorid, ≥99.0% (T)
Sigma-Aldrich
Magnesiumchlorid -Lösung, BioUltra, for molecular biology, 2 M in H2O
Sigma-Aldrich
Natriumfluorid, ReagentPlus®, ≥99%
Sigma-Aldrich
Magnesiumchlorid, BioReagent, suitable for insect cell culture, ≥97.0%
Sigma-Aldrich
Natriumfluorid, 99.99% trace metals basis
Sigma-Aldrich
Ethylendiamintetraessigsäure, ACS reagent, 99.4-100.6%, powder
Sigma-Aldrich
Stickstoff, ≥99.998%
Sigma-Aldrich
Magnesiumchlorid -Lösung, PCR Reagent, 25 mM MgCI2 solution for PCR
Sigma-Aldrich
Magnesiumchlorid, AnhydroBeads, −10 mesh, 99.9% trace metals basis
Sigma-Aldrich
Benzamidin, ≥95.0%
Sigma-Aldrich
Natriumfluorid, puriss., meets analytical specification of Ph. Eur., BP, USP, 98.5-100.5% (calc. to the dried substance)
Sigma-Aldrich
Natriumfluoridlösung
Sigma-Aldrich
Natriumfluorid, BioReagent, suitable for insect cell culture, ≥99%
Sigma-Aldrich
Ethylendiamintetraessigsäure, anhydrous, BioUltra, ≥99% (titration)
Sigma-Aldrich
Ethylenglykol-bis(2-aminoethylether)-N,N,N′,N′-Tetraessigsäure, ≥97.0%
Sigma-Aldrich
Magnesiumchlorid, AnhydroBeads, −10 mesh, 99.99% trace metals basis
Sigma-Aldrich
Magnesiumchlorid -Lösung, BioUltra, for molecular biology, ~1 M in H2O