Direkt zum Inhalt
Merck
  • Solvent isotope effects on alkane formation by cyanobacterial aldehyde deformylating oxygenase and their mechanistic implications.

Solvent isotope effects on alkane formation by cyanobacterial aldehyde deformylating oxygenase and their mechanistic implications.

Biochemistry (2014-08-22)
Matthew W Waugh, E Neil G Marsh
ZUSAMMENFASSUNG

The reaction catalyzed by cyanobacterial aldehyde deformylating oxygenase is of interest both because of its potential application to the production of biofuels and because of the highly unusual nature of the deformylation reaction it catalyzes. Whereas the proton in the product alkane derives ultimately from the solvent, the identity of the proton donor in the active site remains unclear. To investigate the proton transfer step, solvent isotope effect (SIE) studies were undertaken. The rate of alkane formation was found to be maximal at pH 6.8 and to be the same in D2O or H2O within experimental error, implying that proton transfer is not a kinetically significant step. However, when the ratio of protium to deuterium in the product alkane was measured as a function of the mole fraction of D2O, a (D2O)SIEobs of 2.19 ± 0.02 was observed. The SIE was invariant with the mole fraction of D2O, indicating the involvement of a single protic site in the reaction. We interpret this SIE as most likely arising from a reactant state equilibrium isotope effect on a proton donor with an inverse fractionation factor, for which Φ = 0.45. These observations are consistent with an iron-bound water molecule being the proton donor to the alkane in the reaction.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
Deuteriumoxid, 99.9 atom % D
Sigma-Aldrich
Kaliumchlorid, ACS reagent, 99.0-100.5%
Sigma-Aldrich
HEPES, ≥99.5% (titration)
Sigma-Aldrich
Ammoniumsulfat, ACS reagent, ≥99.0%
Sigma-Aldrich
HEPES, BioPerformance Certified, ≥99.5% (titration), suitable for cell culture
Sigma-Aldrich
Hexan, ReagentPlus®, ≥99%
Sigma-Aldrich
Hexan, suitable for HPLC, ≥95%
Sigma-Aldrich
Ammoniumsulfat, for molecular biology, ≥99.0%
Sigma-Aldrich
Hexan, Laboratory Reagent, ≥95%
Sigma-Aldrich
Kaliumchlorid, for molecular biology, ≥99.0%
Sigma-Aldrich
Kaliumchlorid, puriss., meets analytical specification of Ph. Eur., BP, USP, FCC, E508, 99-100.5% (AT), ≤0.0001% Al
Sigma-Aldrich
Hexan, HPLC Plus, for HPLC, GC, and residue analysis, ≥95%
Sigma-Aldrich
Deuteriumoxid, 99.9 atom % D, contains 0.05 wt. % 3-(trimethylsilyl)propionic-2,2,3,3-d4 acid, sodium salt
Sigma-Aldrich
Kaliumchlorid, powder, BioReagent, suitable for cell culture, suitable for insect cell culture, ≥99.0%
Sigma-Aldrich
HEPES, BioUltra, for molecular biology, ≥99.5% (T)
Sigma-Aldrich
Ammoniumsulfat, ReagentPlus®, ≥99.0%
Sigma-Aldrich
Kaliumchlorid, ReagentPlus®, ≥99.0%
Sigma-Aldrich
HEPES-Pufferlösung, 1 M in H2O
Sigma-Aldrich
Kaliumchlorid -Lösung, BioUltra, for molecular biology, ~1 M in H2O
SAFC
HEPES
Sigma-Aldrich
Kaliumchlorid, anhydrous, free-flowing, Redi-Dri, ACS reagent, ≥99%
Sigma-Aldrich
Phenazin-Methosulfat
Sigma-Aldrich
Kaliumchlorid, BioUltra, for molecular biology, ≥99.5% (AT)
Sigma-Aldrich
Kaliumchlorid, puriss. p.a., ≥99.5% (AT)
Sigma-Aldrich
Deuteriumoxid, 99.9 atom % D, contains 0.75 wt. % 3-(trimethylsilyl)propionic-2,2,3,3-d4 acid, sodium salt
Supelco
Potassium chloride -Lösung, for Ag/AgCl electrodes, ~3 M KCl, saturated with silver chloride
Sigma-Aldrich
HEPES, BioXtra, suitable for mouse embryo cell culture, ≥99.5% (titration)
SAFC
HEPES
Supelco
Kaliumchlorid, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Kaliumchlorid, 99.999% trace metals basis