Przejdź do zawartości
Merck

732613

Sigma-Aldrich

Poly(ethylene glycol) methyl ether

average MN 20,000, methoxy, hydroxyl

Synonim(y):

Polyethylene glycol, Methoxy poly(ethylene glycol), Polyethylene glycol monomethyl ether, mPEG

Zaloguj sięWyświetlanie cen organizacyjnych i kontraktowych


About This Item

Wzór liniowy:
CH3(OCH2CH2)nOH
Numer CAS:
Numer MDL:
Kod UNSPSC:
12162002
NACRES:
NA.23

product name

Poly(ethylene glycol) methyl ether, average Mn 20,000

gęstość pary

>1 (vs air)

ciśnienie pary

0.05 mmHg ( 20 °C)

Postać

powder or crystals

masa cząsteczkowa

average Mn 20,000

mp

64-69 °C

Mw/Mn

≤1.2

Ω-koniec

hydroxyl

α-koniec

methoxy

temp. przechowywania

−20°C

InChI

1S/C3H8O2/c1-5-3-2-4/h4H,2-3H2,1H3

Klucz InChI

XNWFRZJHXBZDAG-UHFFFAOYSA-N

Szukasz podobnych produktów? Odwiedź Przewodnik dotyczący porównywania produktów

Zastosowanie

  • Deoxycholic acid-grafted PEGylated chitosan micelles for the delivery of mitomycin C.: This study develops PEGylated chitosan micelles grafted with deoxycholic acid for effective delivery of mitomycin C, showcasing the potential of PEGylated compounds in pharmaceutical formulations and drug delivery systems (Zhang et al., 2015).
This page may contain text that has been machine translated.

Kod klasy składowania

11 - Combustible Solids

Klasa zagrożenia wodnego (WGK)

WGK 1

Temperatura zapłonu (°F)

359.6 °F

Temperatura zapłonu (°C)

182 °C


Certyfikaty analizy (CoA)

Poszukaj Certyfikaty analizy (CoA), wpisując numer partii/serii produktów. Numery serii i partii można znaleźć na etykiecie produktu po słowach „seria” lub „partia”.

Masz już ten produkt?

Dokumenty związane z niedawno zakupionymi produktami zostały zamieszczone w Bibliotece dokumentów.

Odwiedź Bibliotekę dokumentów

Yiyi Yu et al.
Journal of pharmaceutical sciences, 102(3), 1054-1062 (2013-01-03)
To promote the application of methoxy poly(ethylene glycol)-cholesterol (mPEG-Chol), mPEG-Chol was used to prepare core-shell micelles encapsulating poorly water-soluble docetaxel (DTX-PM) by modified cosolvent evaporation method. Approaches to enhance DTX entrapment efficiency (EE) and minimize particle size were investigated in
Pengxiang Zhao et al.
Chemical communications (Cambridge, England), 49(31), 3218-3220 (2013-03-14)
"Click" chemistry now offers access to a great variety of triazoles, and the first example of a strategy to stabilize gold nanoparticles (AuNPs) with a new 1,2,3-triazole-mPEG ligand is developed here together with preliminary examples of possible applications.
Hyo Won Seo et al.
Biomaterials, 34(11), 2748-2757 (2013-01-25)
The effectiveness of systemically administered anticancer treatments is limited by difficulties in achieving therapeutic doses within tumors, a problem that is complicated by dose-limiting side effects to normal tissue. To increase the efficacy and reduce the toxicity of systemically administered
Mulu Z Tesfay et al.
Journal of virology, 87(7), 3752-3759 (2013-01-18)
We are developing oncolytic vesicular stomatitis viruses (VSVs) for systemic treatment of multiple myeloma, an incurable malignancy of antibody-secreting plasma cells that are specifically localized in the bone marrow. One of the presumed advantages for using VSV as an oncolytic
Prakash G Avaji et al.
Bioorganic & medicinal chemistry letters, 23(6), 1763-1767 (2013-02-16)
Saturated fatty acids (FA) were grafted using tyrosine as a spacer group to the cyclotriphosphazene ring along with equimolar hydrophilic methoxy poly(ethylene glycol) (MPEG) in cis-nongeminal way. Seven new cyclotriphosphazene amphiphiles were prepared from combinations of hydrophilic MPEGs with different

Produkty

Progress in biotechnology fields such as tissue engineering and drug delivery is accompanied by an increasing demand for diverse functional biomaterials. One class of biomaterials that has been the subject of intense research interest is hydrogels, because they closely mimic the natural environment of cells, both chemically and physically and therefore can be used as support to grow cells. This article specifically discusses poly(ethylene glycol) (PEG) hydrogels, which are good for biological applications because they do not generally elicit an immune response. PEGs offer a readily available, easy to modify polymer for widespread use in hydrogel fabrication, including 2D and 3D scaffold for tissue culture. The degradable linkages also enable a variety of applications for release of therapeutic agents.

Designing biomaterial scaffolds mimicking complex living tissue structures is crucial for tissue engineering and regenerative medicine advancements.

Nasz zespół naukowców ma doświadczenie we wszystkich obszarach badań, w tym w naukach przyrodniczych, materiałoznawstwie, syntezie chemicznej, chromatografii, analityce i wielu innych dziedzinach.

Skontaktuj się z zespołem ds. pomocy technicznej