supported liquid membrane during hollow-fiber liquid-phase microextraction method for determination of nitrophenolic compounds from atmospheric aerosol particles[1]
an extraction solventto detect avermectins in stream water by hollow-fiber-assisted liquid-phase microextraction technique coupled with LC-MS/MS[2]
Journal of chromatography. A, 1556, 29-36 (2018-05-08)
A new geometry for a versatile microfluidic-chip device based liquid phase microextraction was developed in order to enhance the preconcentration in microfluidic chips and also to enable double-flow and stopped-flow working modes. The microchip device was combined with a HPLC
Journal of chromatography. A, 1429, 13-21 (2015-12-30)
A simple and efficient approach is introduced for the improvement of the clean-up and applicability of the dispersive liquid-liquid microextraction (DLLME) method in complicated matrices. For this purpose, two dispersive microextraction methods were combined, and the tandem dispersive liquid-liquid microextraction
A hollow-fiber liquid-phase microextraction method was developed to enrich nine nitrophenolic compounds from aqueous extracts of atmospheric aerosol particles. Analysis was performed by CE coupled with ESI MS. The BGE composition was optimized to a 20 mM ammonium acetate buffer
Analytical and bioanalytical chemistry, 411(13), 2937-2944 (2019-04-02)
3-Methyl-1,2,3-butanetricarboxylic acid (MBTCA) is a secondary organic aerosol and can be used as a unique emission marker of biogenic emissions of monoterpenes. Seasonal variations and differences in vegetation cover around the world may lead to low atmospheric MBTCA concentrations, in
A fast double-flow microfluidic based liquid phase microextraction (DF-µLPME) combined with a HPLC-UV procedure using diode array detection has been developed for the determination of the four most widely used parabens: Ethyl 4-hydroxybenzoate (EtP), Propyl 4-hydroxybenzoate (PrP), Butyl 4-hydroxybenzoate (BuP)