Passa al contenuto
Merck

Transplantation of betacellulin-transduced islets improves glucose intolerance in diabetic mice.

Experimental & molecular medicine (2014-05-31)
Mi-Young Song, Ui-Jin Bae, Kyu Yun Jang, Byung-Hyun Park
ABSTRACT

Type 1 diabetes is an autoimmune disease caused by permanent destruction of insulin-producing pancreatic β cells and requires lifelong exogenous insulin therapy. Recently, islet transplantation has been developed, and although there have been significant advances, this approach is not widely used clinically due to the poor survival rate of the engrafted islets. We hypothesized that improving survival of engrafted islets through ex vivo genetic engineering could be a novel strategy for successful islet transplantation. We transduced islets with adenoviruses expressing betacellulin, an epidermal growth factor receptor ligand, which promotes β-cell growth and differentiation, and transplanted these islets under the renal capsule of streptozotocin-induced diabetic mice. Transplantation with betacellulin-transduced islets resulted in prolonged normoglycemia and improved glucose tolerance compared with those of control virus-transduced islets. In addition, increased microvascular density was evident in the implanted islets, concomitant with increased endothelial von Willebrand factor immunoreactivity. Finally, cultured islets transduced with betacellulin displayed increased proliferation, reduced apoptosis and enhanced glucose-stimulated insulin secretion in the presence of cytokines. These experiments suggest that transplantation with betacellulin-transduced islets extends islet survival and preserves functional islet mass, leading to a therapeutic benefit in type 1 diabetes.

MATERIALI
N° Catalogo
Marchio
Descrizione del prodotto

Sigma-Aldrich
HEPES, ≥99.5% (titration)
Sigma-Aldrich
HEPES, BioPerformance Certified, ≥99.5% (titration), suitable for cell culture
Sigma-Aldrich
D-(+)-Glucosio, ≥99.5% (GC)
Sigma-Aldrich
D-(+)-Glucosio, powder, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99.5%
Sigma-Aldrich
Cloruro di magnesio, for molecular biology, 1.00 M±0.01 M
Sigma-Aldrich
Cloruro di magnesio, anhydrous, ≥98%
Sigma-Aldrich
D-(+)-Glucosio, 97.5-102.0% anhydrous basis, meets EP, BP, JP, USP testing specifications
Sigma-Aldrich
D-(+)-Glucosio, ≥99.5% (GC), BioXtra
Sigma-Aldrich
HEPES, BioUltra, for molecular biology, ≥99.5% (T)
Sigma-Aldrich
Soluzione tampone HEPES, 1 M in H2O
USP
Destrosio, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Cloruro di magnesio, powder, <200 μm
SAFC
HEPES
Sigma-Aldrich
D-(+)-Glucosio, BioUltra, anhydrous, ≥99.5% (sum of enantiomers, HPLC)
Sigma-Aldrich
Cloruro di magnesio, BioUltra, for molecular biology, 2 M in H2O
Supelco
D-(+)-Glucosio, analytical standard
Sigma-Aldrich
Cloruro di magnesio, BioReagent, suitable for insect cell culture, ≥97.0%
Sigma-Aldrich
HEPES, BioXtra, suitable for mouse embryo cell culture, ≥99.5% (titration)
SAFC
HEPES
Sigma-Aldrich
Cloruro di magnesio, PCR Reagent, 25 mM MgCI2 solution for PCR
Sigma-Aldrich
D-(+)-Glucosio, suitable for mouse embryo cell culture, ≥99.5% (GC)
Sigma-Aldrich
Cloruro di magnesio, AnhydroBeads, −10 mesh, 99.9% trace metals basis
Sigma-Aldrich
HEPES, BioXtra, pH 5.0-6.5 (1 M in H2O), ≥99.5% (titration)
Sigma-Aldrich
D-(+)-Glucosio, Hybri-Max, powder, BioReagent, suitable for hybridoma
Sigma-Aldrich
D-(+)-Glucosio, ACS reagent
Sigma-Aldrich
Cloruro di magnesio, AnhydroBeads, −10 mesh, 99.99% trace metals basis
Sigma-Aldrich
HEPES, anhydrous, free-flowing, Redi-Dri, ≥99.5%
Sigma-Aldrich
Cloruro di magnesio, 0.1 M
Supelco
D-(+)-Glucosio, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
D-(+)-Glucosio, 99.9 atom % 16O, 99.9 atom % 12C