Passa al contenuto
Merck
  • Multiple UDP-glucuronosyltransferases in human liver microsomes glucuronidate both R- and S-7-hydroxywarfarin into two metabolites.

Multiple UDP-glucuronosyltransferases in human liver microsomes glucuronidate both R- and S-7-hydroxywarfarin into two metabolites.

Archives of biochemistry and biophysics (2014-12-03)
C Preston Pugh, Dakota L Pouncey, Jessica H Hartman, Robert Nshimiyimana, Linda P Desrochers, Thomas E Goodwin, Gunnar Boysen, Grover P Miller
ABSTRACT

The widely used anticoagulant Coumadin (R/S-warfarin) undergoes oxidation by cytochromes P450 into hydroxywarfarins that subsequently become conjugated for excretion in urine. Hydroxywarfarins may modulate warfarin metabolism transcriptionally or through direct inhibition of cytochromes P450 and thus, UGT action toward hydroxywarfarin elimination may impact levels of the parent drugs and patient responses. Nevertheless, relatively little is known about conjugation by UDP-glucuronosyltransferases in warfarin metabolism. Herein, we identified probable conjugation sites, kinetic mechanisms and hepatic UGT isoforms involved in microsomal glucuronidation of R- and S-7-hydroxywarfarin. Both compounds underwent glucuronidation at C4 and C7 hydroxyl groups based on elution properties and spectral characteristics. Their formation demonstrated regio- and enantioselectivity by UGTs and resulted in either Michaelis-Menten or substrate inhibition kinetics. Glucuronidation at the C7 hydroxyl group occurred more readily than at the C4 group, and the reaction was overall more efficient for R-7-hydroxywarfarin due to higher affinity and rates of turnover. The use of these mechanisms and parameters to model in vivo clearance demonstrated that contributions of substrate inhibition would lead to underestimation of metabolic clearance than that predicted by Michaelis-Menten kinetics. Lastly, these processes were driven by multiple UGTs indicating redundancy in glucuronidation pathways and ultimately metabolic clearance of R- and S-7-hydroxywarfarin.

MATERIALI
N° Catalogo
Marchio
Descrizione del prodotto

Sigma-Aldrich
Metanolo, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Tetraidrofurano, inhibitor-free, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Metanolo, ACS reagent, ≥99.8%
Sigma-Aldrich
Ethyl alcohol, Pure, 200 proof, ACS reagent, ≥99.5%
Sigma-Aldrich
Etilacetato, ACS reagent, ≥99.5%
Sigma-Aldrich
Acido acetico, glacial, ACS reagent, ≥99.7%
Sigma-Aldrich
Acido acetico, glacial, ReagentPlus®, ≥99%
Sigma-Aldrich
Etilacetato, suitable for HPLC, ≥99.7%
Sigma-Aldrich
Tetraidrofurano, contains 250 ppm BHT as inhibitor, ACS reagent, ≥99.0%
Sigma-Aldrich
Acido perclorico, ACS reagent, 70%
Sigma-Aldrich
Metanolo, HPLC Plus, ≥99.9%
Sigma-Aldrich
Etilacetato, HPLC Plus, for HPLC, GC, and residue analysis, 99.9%
Sigma-Aldrich
Ethyl alcohol, Pure, 200 proof, meets USP testing specifications
Sigma-Aldrich
Ethyl alcohol, Pure, 190 proof, for molecular biology
Sigma-Aldrich
Cloruro di magnesio, anhydrous, ≥98%
Sigma-Aldrich
Cloruro di magnesio, for molecular biology, 1.00 M±0.01 M
Sigma-Aldrich
Acido acetico, glacial, ≥99.99% trace metals basis
Sigma-Aldrich
Metanolo, suitable for HPLC, gradient grade, suitable as ACS-grade LC reagent, ≥99.9%
Sigma-Aldrich
Acido acetico, suitable for HPLC
Sigma-Aldrich
Metanolo, Laboratory Reagent, ≥99.6%
Sigma-Aldrich
Etilacetato, suitable for HPLC, ≥99.8%
Sigma-Aldrich
Etanolo, BioUltra, for molecular biology, ≥99.8%, (absolute alcohol, without additive, A15 o1)
Sigma-Aldrich
Acido perclorico, 70%, 99.999% trace metals basis
Sigma-Aldrich
Acido perclorico, ACS reagent, 60%
Sigma-Aldrich
Metanolo, Absolute - Acetone free
Sigma-Aldrich
Metanolo, BioReagent, ≥99.93%
Sigma-Aldrich
Metanolo, ACS spectrophotometric grade, ≥99.9%
Sigma-Aldrich
Bilirubina, ≥98% (EmM/453 = 60), powder
Sigma-Aldrich
Cloruro di magnesio, powder, <200 μm
Sigma-Aldrich
Metanolo, ACS reagent, ≥99.8%