Ugrás a tartalomra
Merck

81300

Sigma-Aldrich

Poly(ethylene glycol)

average MN 20,000, hydroxyl

Szinonimák:

Polyethylene glycol, PEG

Bejelentkezésa Szervezeti és Szerződéses árazás megtekintéséhez


About This Item

Lineáris képlet:
H(OCH2CH2)nOH
CAS-szám:
MDL-szám:
UNSPSC kód:
12352104
PubChem Substance ID:
NACRES:
NA.23

product name

Poly(ethylene glycol), average Mn 20,000

form

flakes

Minőségi szint

molekulatömeg

average Mn 20,000

mp

63-66 °C

Ω-end

hydroxyl

α-end

hydroxyl

SMILES string

C(CO)O

InChI

1S/C2H6O2/c3-1-2-4/h3-4H,1-2H2

Nemzetközi kémiai azonosító kulcs

LYCAIKOWRPUZTN-UHFFFAOYSA-N

Looking for similar products? Látogasson el ide Útmutató a termékösszehasonlításhoz

Általános leírás

Polyethylene glycol (PEG) is a hydrophilic polymer. It can be easily synthesized by the anionic ring opening polymerization of ethylene oxide, into a range molecular weights and variety of end groups. When crosslinked into networks PEG can have high water content, forming “hydrogels”. Hydrogel formation can be initiated by either crosslinking PEG by ionizing radiation or by covalent crosslinking of PEG macromers with reactive chain ends. PEG is a suitable material for biological applications because it does not trigger an immune response.

Alkalmazás

PEG has been used to modify therapeutic proteins and peptides to increase their solubility and lower their toxicity.

Photopolymerized PEG hydrogels have emerging applications in the fabrication of bioactive and immunoisolating barriers for encapsulation of cells.

Egyéb megjegyzések

Molecular weight: Mn 16,000-24,000

Tárolási osztály kódja

11 - Combustible Solids

WGK

WGK 1

Lobbanási pont (F)

Not applicable

Lobbanási pont (C)

Not applicable

Egyéni védőeszköz

Eyeshields, Gloves, type N95 (US)


Válasszon a legfrissebb verziók közül:

Analitikai tanúsítványok (COA)

Lot/Batch Number

Nem találja a megfelelő verziót?

Ha egy adott verzióra van szüksége, a tétel- vagy cikkszám alapján rákereshet egy adott tanúsítványra.

Már rendelkezik ezzel a termékkel?

Az Ön által nemrégiben megvásárolt termékekre vonatkozó dokumentumokat a Dokumentumtárban találja.

Dokumentumtár megtekintése

Az ügyfelek ezeket is megtekintették

Xu Zhang et al.
Langmuir : the ACS journal of surfaces and colloids, 28(40), 14330-14337 (2012-09-20)
Understanding the interface between DNA and nanomaterials is crucial for rational design and optimization of biosensors and drug delivery systems. For detection and delivery into cells, where high concentrations of cellular proteins are present, another layer of complexity is added.
Carrie F Olson-Manning
Molecular biology and evolution, 37(8), 2257-2267 (2020-03-21)
Metabolic networks are complex cellular systems dependent on the interactions among, and regulation of, the enzymes in the network. Although there is great diversity of types of enzymes that make up metabolic networks, the models meant to understand the possible
Chien-Chi Lin et al.
Biomaterials, 32(36), 9685-9695 (2011-09-20)
Hydrogels provide three-dimensional frameworks with tissue-like elasticity and high permeability for culturing therapeutically relevant cells or tissues. While recent research efforts have created diverse macromer chemistry to form hydrogels, the mechanisms of hydrogel polymerization for in situ cell encapsulation remain
Teagan E Bate et al.
Soft matter, 15(25), 5006-5016 (2019-06-06)
Self-organization of kinesin-driven, microtubule-based 3D active fluids relies on the collective dynamics of single microtubules. However, the connection between macroscopic fluid flows and microscopic motion of microtubules remains unclear. In this work, the motion of single microtubules was characterized by
Oliver J Harrison et al.
Cell reports, 30(8), 2655-2671 (2020-02-27)
Non-clustered δ1- and δ2-protocadherins, close relatives of clustered protocadherins, function in cell adhesion and motility and play essential roles in neural patterning. To understand the molecular interactions underlying these functions, we used solution biophysics to characterize binding of δ1- and

Cikkek

Progress in biotechnology fields such as tissue engineering and drug delivery is accompanied by an increasing demand for diverse functional biomaterials. One class of biomaterials that has been the subject of intense research interest is hydrogels, because they closely mimic the natural environment of cells, both chemically and physically and therefore can be used as support to grow cells. This article specifically discusses poly(ethylene glycol) (PEG) hydrogels, which are good for biological applications because they do not generally elicit an immune response. PEGs offer a readily available, easy to modify polymer for widespread use in hydrogel fabrication, including 2D and 3D scaffold for tissue culture. The degradable linkages also enable a variety of applications for release of therapeutic agents.

Designing biomaterial scaffolds mimicking complex living tissue structures is crucial for tissue engineering and regenerative medicine advancements.

Tudóscsoportunk valamennyi kutatási területen rendelkezik tapasztalattal, beleértve az élettudományt, az anyagtudományt, a kémiai szintézist, a kromatográfiát, az analitikát és még sok más területet.

Lépjen kapcsolatba a szaktanácsadással