Complexation-triggerable liposomes were prepared by modifying the surface of egg phosphatidylcholine (EPC) liposomes with hydrophobicized silk fibroin (HmSF) and hydrophobicized chitosan (HmCh). Maximum complexation, determined by measuring the diameter of complexation, was found when the ratio of HmSF to HmCh was 14:1, so they were immobilized on the surface of liposomes at the same ratio. The degree of fluorescence quenching of calcein in liposomal suspension was as high as 68% when the ratio of surface modifier (HmSF + HmCh) to EPC was 1:15. When the ratio was increased to 1:5, the degree of quenching decreased to 32%, indicating the inefficient formation of liposome. Liposome mixed with the surface modifier was multi-lamellar vesicle on TEM photo. And, the mean diameter was larger than those of liposome mixed with either HmSF or HmCh, possibly due to insoluble complex on the liposomal surface. The liposome exhibited a pH-sensitive release and triggered the release at pH 5.5 and 6.0. It is believed that complexation is responsible for the promoted release at those pH values.