Passa al contenuto
Merck

Postnatal development of the molecular complex underlying astrocyte polarization.

Brain structure & function (2014-04-30)
Lisa K Lunde, Laura M A Camassa, Eystein H Hoddevik, Faraz H Khan, Ole Petter Ottersen, Henning B Boldt, Mahmood Amiry-Moghaddam
ABSTRACT

Astrocytes are highly polarised cells with processes that ensheath microvessels, cover the brain surface, and abut synapses. The endfoot membrane domains facing microvessels and pia are enriched with aquaporin-4 water channels (AQP4) and other members of the dystrophin associated protein complex (DAPC). Several lines of evidence show that loss of astrocyte polarization, defined by the loss of proteins that are normally enriched in astrocyte endfeet, is a common denominator of several neurological diseases such as mesial temporal lobe epilepsy, Alzheimer's disease, and stroke. Little is known about the mechanisms responsible for inducing astrocyte polarization in vivo. Here we introduce the term endfoot-basal lamina junctional complex (EBJC) to denote the proteins that consolidate and characterize the gliovascular interface. The present study was initiated in order to resolve the developmental profile of the EBJC in mouse brain. We show that the EBJC is established after the first week postnatally. Through a combination of methodological approaches, including light microscopic and high resolution immunogold cytochemistry, quantitative RT-PCR, and Western blotting, we demonstrate that the different members of this complex exhibit distinct ontogenic profiles—with the extracellular matrix (ECM) proteins laminin and agrin appearing earlier than the other members of the complex. Specifically, while laminin and agrin expression peak at P7, quantitative immunoblot analyses indicate that AQP4, α-syntrophin, and the inwardly rectifying K(+) channel Kir4.1 expression increases towards adulthood. Our findings are consistent with ECM having an instructive role in establishing astrocyte polarization in postnatal development and emphasize the need to explore the involvement of ECM in neurological disease.

MATERIALI
N° Catalogo
Marchio
Descrizione del prodotto

Sigma-Aldrich
Acqua, Nuclease-Free Water, for Molecular Biology
Sigma-Aldrich
Acqua, sterile-filtered, BioReagent, suitable for cell culture
Sigma-Aldrich
DAPI, for nucleic acid staining
Sigma-Aldrich
Acido cloridrico, 1.0 N, BioReagent, suitable for cell culture
Sigma-Aldrich
Acido cloridrico, 36.5-38.0%, BioReagent, for molecular biology
Sigma-Aldrich
Anti-laminina, 0.5 mg/mL, affinity isolated antibody, buffered aqueous solution
Sigma-Aldrich
Acqua, for embryo transfer, sterile-filtered, BioXtra, suitable for mouse embryo cell culture
Sigma-Aldrich
Acqua, for molecular biology, sterile filtered
Supelco
Acido cloridrico, volumetric, 0.1 M HCl (0.1N), endotoxin free
Sigma-Aldrich
Hydrogen chloride, ReagentPlus®, ≥99%
Sigma-Aldrich
Acqua, BioPerformance Certified
Sigma-Aldrich
Acido cloridrico, ~6 M in H2O, for amino acid analysis
Sigma-Aldrich
Cloruro di idrogeno, 3 M in cyclopentyl methyl ether (CPME)
Sigma-Aldrich
Acido cloridrico, 32 wt. % in H2O, FCC
Sigma-Aldrich
Acqua, for cell biology, sterile ultrafiltered
Sigma-Aldrich
Acqua, PCR Reagent
Sigma-Aldrich
Water, deuterium-depleted, ≤1 ppm (Deuterium oxide)
Sigma-Aldrich
Water-16O, ≥99.94 atom % 16O
Sigma-Aldrich
Acqua, endotoxin, free