Direkt zum Inhalt
Merck
  • L-arginine and arginine ethyl ester enhance proliferation of endothelial cells and preadipocytes - how an arginine ethyl ester-releasing biomaterial could support endothelial cell growth in tissue engineering.

L-arginine and arginine ethyl ester enhance proliferation of endothelial cells and preadipocytes - how an arginine ethyl ester-releasing biomaterial could support endothelial cell growth in tissue engineering.

Bio-medical materials and engineering (2015-09-26)
N E Paul, R Lösel, K Hemmrich, D Goy, N Pallua, D Klee
ZUSAMMENFASSUNG

Adipose tissue engineering is a promising solution for the reconstruction of soft tissue defects. An insufficient neovascularisation within the scaffolds that leads to necrosis and tissue loss is still a major shortcoming of current tissue engineering attempts. Biomaterials, which release angiogenic factors such as L-arginine, could overcome this challenge by supporting the neovascularisation of the constructs. L-arginine is insoluble in organic solvents and thus cannot be incorporated into commonly used polymers in contrast to its ethyl ester. Here, we compared the effects of arginine and its ethyl ester on endothelial cells and preadipocytes, and generated an arginine ethyl ester-releasing, angiogenic polymer. We cultivated adipose tissue-derived endothelial cells and preadipocytes in arginine-free medium supplemented with L-arginine or L-arginine ethyl ester and assayed the proliferation rate and the degree of adipogenic differentiation, respectively. Additionally, we prepared arginine ethyl ester-releasing poly(D,L-lactide) foils, and investigated their impact on endothelial cell proliferation. We could demonstrate that arginine ethyl ester like arginine significantly increased the proliferation of endothelial cells and preadipocytes without inhibiting an induced adipogenic conversion of the preadipocytes. Further, we could show that the arginine ethyl ester-releasing polymer significantly increased endothelial cell growth. The present data are helpful guidance for generating angiogenic biomaterials that promote endothelial cell growth, and thereby could support neovascularisation within tissue engineering approaches.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
Dexamethason, powder, BioReagent, suitable for cell culture, ≥97%
Sigma-Aldrich
3-Isobutyl-1-methylxanthin, ≥99% (HPLC), powder
Sigma-Aldrich
3-Isobutyl-1-methylxanthin, ≥99%, BioUltra
Sigma-Aldrich
Dexamethason, ≥98% (HPLC), powder
Sigma-Aldrich
L-Arginin -monohydrochlorid, not synthetic, meets EP, JP, USP testing specifications, suitable for cell culture, 98.5-101.0%
Sigma-Aldrich
L-Arginin -monohydrochlorid, BioUltra, ≥99.5% (AT)
Sigma-Aldrich
L-Arginin -monohydrochlorid, reagent grade, ≥98% (HPLC), powder
Sigma-Aldrich
Dexamethason, powder, γ-irradiated, BioXtra, suitable for cell culture, ≥80% (HPLC)
SAFC
L-Arginin -monohydrochlorid
Sigma-Aldrich
L-Arginine ethyl ester dihydrochloride
Sigma-Aldrich
Dexamethason, meets USP testing specifications