Direkt zum Inhalt
Merck
  • Inulin-based polymer coated SPIONs as potential drug delivery systems for targeted cancer therapy.

Inulin-based polymer coated SPIONs as potential drug delivery systems for targeted cancer therapy.

European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V (2014-10-05)
C Scialabba, M Licciardi, N Mauro, F Rocco, M Ceruti, G Giammona
ZUSAMMENFASSUNG

This paper deal with the synthesis and characterization of PEGylated squalene-grafted-inulin amphiphile capable of self-assembling and self-organizing into nanocarriers once placed in aqueous media. It was exploited as coating agent for obtaining doxorubicin loaded superparamagnetic iron oxide nanoparticles (SPIONs) endowed with stealth like behavior and excellent physicochemical stability. Inulin was firstly modified in the side chain with primary amine groups, followed in turn by conjugation with squalenoyl derivatives through common amidic coupling agents and PEGylation by imine linkage. Polymer coated SPIONs were so obtained by spontaneous self-assembling of inulin copolymer onto magnetite surface involving hydrophobic-hydrophobic interactions between the metallic core and the squalene moieties. The system was characterized in terms of hydrodynamic radius, zeta potential, shape and drug loading capacity. On the whole, the stealth-like shell stabilized the suspension in aqueous media, though allowing the release of the doxorubicin loaded in therapeutic range. The cytotoxicity profile on cancer (HCT116) cell line and in vitro drug uptake were evaluated both with and without an external magnetic field used as targeting agent and uptake promoter, displaying that magnetic targeting implies advantageous therapeutic effects, that is amplified drug uptake and increased anticancer activity throughout the tumor mass.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
Salzsäure, ACS reagent, 37%
Sigma-Aldrich
N,N-Dimethylformamid, ACS reagent, ≥99.8%
Sigma-Aldrich
N,N-Dimethylformamid, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Salzsäure, ACS reagent, 37%
Sigma-Aldrich
Chlorwasserstoff -Lösung, 4.0 M in dioxane
Sigma-Aldrich
N,N-Dimethylformamid, anhydrous, 99.8%
Sigma-Aldrich
Salzsäure -Lösung, 1.0 N, BioReagent, suitable for cell culture
Sigma-Aldrich
N-Hydroxysuccinimid, 98%
Sigma-Aldrich
Salzsäure, 37 wt. % in H2O, 99.999% trace metals basis
Sigma-Aldrich
Salzsäure, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., fuming, ≥37%, APHA: ≤10
Sigma-Aldrich
Salzsäure, meets analytical specification of Ph. Eur., BP, NF, fuming, 36.5-38%
Sigma-Aldrich
Salzsäure, 36.5-38.0%, BioReagent, for molecular biology
Sigma-Aldrich
Doxorubicin -hydrochlorid, 98.0-102.0% (HPLC)
Sigma-Aldrich
Chlorwasserstoff -Lösung, 2.0 M in diethyl ether
Sigma-Aldrich
Triethylamin, ≥99.5%
Sigma-Aldrich
N,N-Dimethylformamid, puriss. p.a., ACS reagent, reag. Ph. Eur., ≥99.8% (GC)
Sigma-Aldrich
N,N-Dimethylformamid, ReagentPlus®, ≥99%
Sigma-Aldrich
N,N-Dimethylformamid, for molecular biology, ≥99%
Sigma-Aldrich
Triethylamin, BioUltra, ≥99.5% (GC)
Supelco
Salzsäure -Lösung, volumetric, 0.1 M HCl (0.1N), endotoxin free
Sigma-Aldrich
N,N-Dimethylformamid, biotech. grade, ≥99.9%
Sigma-Aldrich
Triethylamin, ≥99%
Sigma-Aldrich
Squalen, ≥98%, liquid
Sigma-Aldrich
Doxorubicin -hydrochlorid, suitable for fluorescence, 98.0-102.0% (HPLC)
Sigma-Aldrich
Chlorwasserstoff -Lösung, 1.0 M in diethyl ether
Sigma-Aldrich
Chlorwasserstoff, ReagentPlus®, ≥99%
Sigma-Aldrich
Ethylendiamin, ReagentPlus®, ≥99%
Sigma-Aldrich
Salzsäure, puriss., 24.5-26.0%
Sigma-Aldrich
Neocuproin, ≥98%
Sigma-Aldrich
Triethylamin, puriss. p.a., ≥99.5% (GC)