as a negative control to study the binding of lectins to high mannose structures[2]
for sample pre-treatment in proteomic analyses to study drug-induced toxic epidermal necrolysis[3]
The Invertase Glycoprotein Standard can be used to demonstrate N-glycosylation using PNGase F with both in-solution and in-gel procedures. The extent of deglycosylation can be assessed by mobility shift on SDS-PAGE gels.
Used in the production of confectionary foods and artificial honey.
Ações bioquímicas/fisiológicas
Invertase hydrolyzes sucrose into glucose and fructose yielding a colorless product, unlike acid hydrolysis which produces colored products.
Outras notas
Invertase is an enzyme that catalyses the hydrolysis of sucrose into fructose and glucose. Invertase Glycoprotein Standard is the periplasmic (glycosylated form, external invertase) with 50% of its mass as polymannan. Since yeast can provide an alternative system for protein glycosylation that is similar to mammalian systems, periplasmic invertase is often used as a model for the study of the function of oligosaccharides in glycoproteins and for studies on glycoprotein biosynthesis.
Proteomic kinetic analysis of blister fluid and serum in a patient with drug-induced toxic epidermal necrolysis. A comparison with skin immunohistochemistry
Paquet P, et al.
Current Drug Safety (2012)
Glycan characterization of the NIST RM monoclonal antibody using a total analytical solution: From sample preparation to data analysis
Hilliard M, et al.
MAbs (2017)
A lectin affinity workflow targeting glycosite-specific, cancer-related carbohydrate structures in trypsin-digested human plasma
The raffinose family oligosaccharides (RFOs), such as raffinose and stachyose, are synthesized by a set of distinct galactosyltransferases, which sequentially add galactose units to sucrose. The accumulation of RFOs in plant cells are closely associated with the responses to environmental
Despite substantial evidence on the essential roles of cell wall invertase (CWIN) in seed filling, it remains largely unknown how CWIN exerts its regulation early in seed development, a critical stage that sets yield potential. To fill this knowledge gap
Nossa equipe de cientistas tem experiência em todas as áreas de pesquisa, incluindo Life Sciences, ciência de materiais, síntese química, cromatografia, química analítica e muitas outras.