Direkt zum Inhalt
Merck
  • Exposure of sea bream (Sparus aurata) to toxic concentrations of benzo[a]pyrene: possible human health effect.

Exposure of sea bream (Sparus aurata) to toxic concentrations of benzo[a]pyrene: possible human health effect.

Ecotoxicology and environmental safety (2015-08-02)
R Zena, A Speciale, C Calabrò, M Calò, D Palombieri, A Saija, F Cimino, D Trombetta, P Lo Cascio
ZUSAMMENFASSUNG

Polycyclic aromatic hydrocarbons (PAHs) can accumulate in the food chain, due to their lipophilic properties. Fish can accumulate contaminants including PAHs and frequent consumption of such contaminated fish can pose risk to human health. The aim of this study was to clarify if acute exposure of sea bream (Sparus aurata, a fish species of great economic importance in the Atlantic and Mediterranean areas) to a PAH, benzo[a]pyrene (B[a]P), at a dose that can induce CYP1A and pathological changes in fish gills, liver and muscle, can induce accumulation in muscle. We investigated the cytotoxic effects (as changes in cell viability, DNA laddering and glutathione content) of in vitro exposure of human peripheral blood mononuclear cells (PBMCs) to organic extracts obtained from muscle of sea breams previously exposed via water to B[a]P (2mg/l, for 12, 24 and 72 h). At this level of exposure, B[a]P caused morphological changes, inflammatory response and CYP1A induction not only in sea bream gills and liver but also in muscle; furthermore, in fish muscle we observed a substantial B[a]P accumulation, which may be associated with the increased CYP1A activity in liver and especially in muscle. However, when PBMCs were exposed to organic extracts obtained from sea bream muscle contaminated with B[a]P, a toxic, although modest effect was revealed, consisting in a significant decrease in cell glutathione levels without alterations in cell viability and DNA laddering. This suggests that consumption of sea breams from B[a]P contaminated waters might represent a risk for human health.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
Ethyl alcohol, Pure, 200 proof, for molecular biology
Sigma-Aldrich
Dimethylsulfoxid, Hybri-Max, sterile-filtered, BioReagent, suitable for hybridoma, ≥99.7%
Sigma-Aldrich
Dimethylsulfoxid, ACS reagent, ≥99.9%
Sigma-Aldrich
Dimethylsulfoxid, for molecular biology
Sigma-Aldrich
2-Propanol, ACS reagent, ≥99.5%
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Ethyl alcohol, Pure, 200 proof, ACS reagent, ≥99.5%
Sigma-Aldrich
Ethylacetat, ACS reagent, ≥99.5%
Sigma-Aldrich
Essigsäure, glacial, ACS reagent, ≥99.7%
Sigma-Aldrich
Dimethylsulfoxid, sterile-filtered, BioPerformance Certified, meets EP, USP testing specifications, suitable for hybridoma
Sigma-Aldrich
Essigsäure, glacial, ReagentPlus®, ≥99%
Sigma-Aldrich
Dimethylsulfoxid, ReagentPlus®, ≥99.5%
Sigma-Aldrich
Ethyl alcohol, Pure, 200 proof, meets USP testing specifications
Sigma-Aldrich
Dimethylsulfoxid, ≥99.5% (GC), suitable for plant cell culture
Sigma-Aldrich
Acetonitril, ACS reagent, ≥99.5%
Sigma-Aldrich
Cyclohexan, ACS reagent, ≥99%
Sigma-Aldrich
Ethyl alcohol, Pure, 190 proof, for molecular biology
Sigma-Aldrich
Isopropylalkohol, meets USP testing specifications
Sigma-Aldrich
Essigsäure, glacial, ≥99.99% trace metals basis
Sigma-Aldrich
Essigsäure -Lösung, suitable for HPLC
Sigma-Aldrich
2-Propanol, Laboratory Reagent, ≥99.5%
Sigma-Aldrich
Methanol, Laboratory Reagent, ≥99.6%
Sigma-Aldrich
Methanol, ACS spectrophotometric grade, ≥99.9%
Sigma-Aldrich
Methanol, Absolute - Acetone free
Sigma-Aldrich
Isopropylalkohol, ≥99.7%, FCC, FG
Sigma-Aldrich
Dimethylsulfoxid, BioUltra, for molecular biology, ≥99.5% (GC)
Sigma-Aldrich
Ethyl-3-aminobenzoat -methansulfonat, 98%
Sigma-Aldrich
Methanol, BioReagent, ≥99.93%
Sigma-Aldrich
2-Propanol, puriss. p.a., ACS reagent, ≥99.8% (GC)
Sigma-Aldrich
2-Propanol, BioUltra, for molecular biology, ≥99.5% (GC)