Direkt zum Inhalt
Merck
  • Size and surface functionalization of iron oxide nanoparticles influence the composition and dynamic nature of their protein corona.

Size and surface functionalization of iron oxide nanoparticles influence the composition and dynamic nature of their protein corona.

ACS applied materials & interfaces (2014-08-22)
Jonathan Ashby, Songqin Pan, Wenwan Zhong
ZUSAMMENFASSUNG

Nanoparticles (NPs) adsorb proteins when in the biological matrix, and the resulted protein corona could affect NP-cell interactions. The corona has a dynamic nature with the adsorbed proteins constantly exchanging with the free proteins in the matrix at various rates. The rapidly exchanging proteins compose the soft corona, which responds more dynamically to environment changes than the hard corona established by the ones with slow exchange rates. In the present study, the corona formed on the superparamagnetic iron oxide NPs (SPIONs) in human serum was studied by flow field-flow fractionation and ultracentrifugation, which rapidly differentiated the corona proteins based on their exchange rates. By varying the surface hydrophobicity of the SPIONs with a core size around 10 nm, we found out that, the more hydrophobic surface ligand attracted proteins with higher surface hydrophobicity and formed a more dynamic corona with a larger portion of the involved proteins with fast exchange rates. Increasing the core diameter of the SPIONs but keeping the surface ligand the same could also result in a more dynamic corona. A brief investigation of the effect on the cellular uptake of SPIONs using one selected corona protein, transferrin, was conducted. The result showed that, only the stably bound transferrin could significantly enhance cellular uptake, while transferrin bound in a dynamic nature had negligible impact. Our study has led to a better understanding of the relationship between the particle properties and the dynamic nature of the corona, which can help with design of nanomaterials with higher biocompatibility and higher efficacy in biosystems for biomedical applications.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
Acetonitril, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Trifluoressigsäure, ReagentPlus®, 99%
Sigma-Aldrich
Trifluoressigsäure, suitable for HPLC, ≥99.0%
Sigma-Aldrich
Acetonitril, HPLC Plus, ≥99.9%
Sigma-Aldrich
Natriumhydroxid, ACS reagent, ≥97.0%, pellets
Sigma-Aldrich
Natriumphosphat, ACS reagent, ≥99.0%
Sigma-Aldrich
Natriumhydroxid, reagent grade, ≥98%, pellets (anhydrous)
Sigma-Aldrich
Natronlauge, 50% in H2O
Sigma-Aldrich
Ammoniumbicarbonat, ReagentPlus®, ≥99.0%
Sigma-Aldrich
Trifluoressigsäure, puriss. p.a., suitable for HPLC, ≥99.0% (GC)
Sigma-Aldrich
Acetonitril, ACS reagent, ≥99.5%
Sigma-Aldrich
Natronlauge, BioUltra, for molecular biology, 10 M in H2O
Sigma-Aldrich
DL-Dithiothreitol -Lösung, BioUltra, for molecular biology, ~1 M in H2O
Sigma-Aldrich
Natriumphosphat, puriss. p.a., ACS reagent, anhydrous, ≥99.0% (T)
Sigma-Aldrich
Acetonitril, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Jodacetamid, BioUltra
Sigma-Aldrich
Jodacetamid, Single use vial of 56 mg
Supelco
DL-Dithiothreitol -Lösung, 1 M in H2O
Sigma-Aldrich
Natriumhydroxid, BioXtra, ≥98% (acidimetric), pellets (anhydrous)
Sigma-Aldrich
Natronlauge, 1.0 N, BioReagent, suitable for cell culture
Sigma-Aldrich
Natriumhydroxid, puriss., meets analytical specification of Ph. Eur., BP, NF, E524, 98-100.5%, pellets
Sigma-Aldrich
Natriumhydroxid, reagent grade, 97%, powder
Sigma-Aldrich
Acetonitril, anhydrous, 99.8%
Sigma-Aldrich
Jodacetamid, ≥99% (NMR), crystalline
Sigma-Aldrich
Natriumhydroxid, pellets, semiconductor grade, 99.99% trace metals basis
Sigma-Aldrich
Natriumphosphat, puriss., meets analytical specification of Ph. Eur., BP, USP, FCC, E 339, anhydrous, 98-100.5% (calc. to the dried substance)
Sigma-Aldrich
Trifluoressigsäure, ≥99%, for protein sequencing
Sigma-Aldrich
Natriumphosphat, BioReagent, for molecular biology, anhydrous, ≥98%
Sigma-Aldrich
Natronlauge, 5.0 M
Sigma-Aldrich
Natriumphosphat, for molecular biology, ≥98.5% (titration)