Przejdź do zawartości
Merck
Wszystkie zdjęcia(1)

Kluczowe dokumenty

PF024

Sigma-Aldrich

MMP-9, Active, Human, Recombinant

Synonim(y):

Żelatynaza B, żelatynaza 83 kDa, metaloproteinaza macierzy 9

Zaloguj sięWyświetlanie cen organizacyjnych i kontraktowych

Wybierz wielkość

5 μG
2960,00 zł

2960,00 zł


Przewidywany termin wysyłki22 kwietnia 2025Szczegóły


Poproś o zamówienie zbiorcze

Wybierz wielkość

Zmień widok
5 μG
2960,00 zł

About This Item

Numer EC enzymu:
Kod UNSPSC:
12352202
NACRES:
NA.77

2960,00 zł


Przewidywany termin wysyłki22 kwietnia 2025Szczegóły


Poproś o zamówienie zbiorcze

Próba

≥90% (SDS-PAGE)

Poziom jakości

Formularz

liquid

aktywność właściwa

≥8.0 ΔA405/h-μg protein (thiopeptide hydrolysis assay)

nie zawiera

preservative

producent / nazwa handlowa

Calbiochem®

warunki przechowywania

OK to freeze
avoid repeated freeze/thaw cycles

Warunki transportu

wet ice

temp. przechowywania

−70°C

Opis ogólny

Recombinant, human MMP-9 purified from transfected mammalian cells and activated with APMA. Active MMP-9 enzyme is APMA-free. Supplied as the ~83 kDa active enzyme. The proenzyme form of MMP-9 was purified from transfected mammalian cells and activated using the organomercurial compound, 4-aminophenyl mercuric acetate (APMA). APMA is removed through a desalting column. The substrate specificity for MMP-9 is collagen (types IV, V, VII, and X), elastin, and gelatin (type I). Useful for immunoblotting, substrate cleavage, and zymography. Titration is recommended for optimal results in individual systems. Matrix metalloproteinases are members of a unique family of proteolytic enzymes that have a zinc ion at their active sites and can degrade collagens, elastin and other components of the extracellular matrix (ECM). These enzymes are present in normal healthy individuals and have been shown to have an important role in processes such as wound healing, pregnancy, and bone resorption. However, overexpression and activation of MMPs have been linked with a range of pathological processes and disease states involved in the breakdown and remodeling of the ECM. Such diseases include tumor invasion and metastasis, rheumatoid arthritis, periodontal disease, and vascular processes such as angiogenesis, intimal hyperplasia, atherosclerosis, and aneurysms. Recently, MMPs have been linked to neurodegenerative diseases such as Alzheimer′s, and amyotrophic lateral sclerosis (ALS). Natural inhibitors of MMPs, tissue inhibitor of matrix metalloproteinases (TIMPs) exist and synthetic inhibitors have been developed which offer hope of new treatment options for these diseases.



Regulation of MMP activity can occur at the level of gene expression, including transcription and translation, level of activation, or at the level of inhibition by TIMPs. Thus, perturbations at any of these points can theoretically lead to alterations in ECM turnover. Expression is under tight control by pro- and anti-inflammatory cytokines and/or growth factors and, once produced the enzymes are usually secreted as inactive zymograms. Upon activation (removal of the inhibitory propeptide region of the molecules) MMPs are subject to control by locally produced TIMPs. All MMPs can be activated in vitro with organomercurial compounds (e.g. 4-aminophenylmercuric acetate), but the agents responsible for the physiological activation of all MMPs have not been clearly defined. Numerous studies indicate that members of the MMP family have the ability to activate one another. The activation of the MMPs in vivo is likely to be a critical step in terms of their biological behavior, because it is this activation that will tip the balance in favor of ECM degradation. The hallmark of diseases involving MMPs appear to be stoichiometric imbalance between active MMPs and TIMPs, leading to excessive tissue disruption and often degradation. Determination of the mechanisms that control this imbalance may open up some important therapeutic options of specific enzyme inhibitors.

Opakowanie

Please refer to vial label for lot-specific concentration.

Ostrzeżenie

Toxicity: Standard Handling (A)

Postać fizyczna

In 50 mM HEPES, 10 mM CaCl₂, 20% glycerol, 0.005% BRIJ®-35 Detergent, pH 7.5.

Rekonstytucja

Following initial use, aliquot into siliconized vials and freeze (-70°C).

Inne uwagi

Parsons, S.L., et al. 1997. Br. J. Surg.84, 160.
Backstrom, J.R., et al. 1996. J. Neuro.16, 7910.
Lim, G.P., et al. 1996. J. Neurochem.67, 251.
Xia, T., et al. 1996. Biochim. Biophys. Acta1293, 259.
Sang, Q.X., et al. 1995. Biochim. Biophys. Acta1251, 99.
Zempo, N., et al. 1994. J. Vasc. Surg.20, 217.
Birkedal-Hansen, H. 1993. J. Periodontol.64, 484.
Stetler-Stevenson, W.G., et al. 1993. FASEB J.7, 1434.
Jeffrey, J.J. 1991. Semin. Perinatol.15, 118.
Liotta, L.A., et al. 1991. Cell64, 327.
Harris, E. 1990. N. Engl. J. Med.322, 1277.

Informacje prawne

Brij is a registered trademark of Croda International PLC
CALBIOCHEM is a registered trademark of Merck KGaA, Darmstadt, Germany
Ta strona może zawierać tekst przetłumaczony maszynowo.

Kod klasy składowania

10 - Combustible liquids

Klasa zagrożenia wodnego (WGK)

WGK 1

Temperatura zapłonu (°F)

Not applicable

Temperatura zapłonu (°C)

Not applicable


Certyfikaty analizy (CoA)

Poszukaj Certyfikaty analizy (CoA), wpisując numer partii/serii produktów. Numery serii i partii można znaleźć na etykiecie produktu po słowach „seria” lub „partia”.

Masz już ten produkt?

Dokumenty związane z niedawno zakupionymi produktami zostały zamieszczone w Bibliotece dokumentów.

Odwiedź Bibliotekę dokumentów

Kyle J Isaacson et al.
Journal of drug targeting, 28(7-8), 766-779 (2020-04-21)
Silk-elastinlike protein polymers (SELPs) self-assemble into nanostructures when designed with appropriate silk-to-elastin ratios. Here, we investigate the effect of insertion of a matrix metalloproteinase-responsive peptide sequence, GPQGIFGQ, into various locations within the SELP backbone on supramolecular self-assembly. Insertion of the
Rupak Mukherjee et al.
FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 24(10), 3819-3828 (2010-06-10)
Radiofrequency (RF) ablation of the myocardium causes discrete sites of injury. RF scars can expand, altering the extracellular matrix (ECM) structure and the continuity of the electrical syncytium of the adjacent myocardium. Matrix metalloproteinases (MMPs), such as MMP-9, contribute to
Keyana N Porter et al.
Frontiers in aging neuroscience, 12, 92-92 (2020-04-23)
Despite the extensive use of hormonal methods as either contraception or menopausal hormone therapy (HT), there is very little known about the potential effects of these compounds on the cellular processes of the brain. Medroxyprogesterone Acetate (MPA) is a progestogen
Arek Szklarczyk et al.
Journal of neurochemistry, 102(4), 1256-1263 (2007-05-03)
Matrix metalloproteinases (MMPs) belong to a family of zinc dependent enzymes best studied for their role in cancer and inflammation. Though MMPs typically target extracellular proteins, here we show that MMP-7, an MMP family member which lacks a C-terminal hemopexin-like
Sunyoung Jeong et al.
International wound journal, 14(5), 786-790 (2016-12-10)
Proteinases are enzymes that can digest other proteins. In chronic wounds, a sub-class of these enzymes with the ability to degrade the extracellular matrix (matrix metalloproteinases, MMPs) have been found to both inhibit healing and to be able to aid

Questions

  1. Is the PF140 version of active, recombinant MMP9 related or similar in preparation to PF024, which is truncated to 67 kD?

    1 answer
    1. The PF140 version of active, recombinant MMP-9 (Cat. No. PF140) is derived from PF024 (83 kDa) with further activation/truncation down to a smaller fragment of 67 kDa. Both PF140 and PF024 are activated by APMA and have similar formulations. However, they represent two different forms of MMP. PF140 is highly active, stable, and is an enzyme with a truncated C-terminal hemopexin domain.

      Helpful?

Reviews

No rating value

Active Filters

Nasz zespół naukowców ma doświadczenie we wszystkich obszarach badań, w tym w naukach przyrodniczych, materiałoznawstwie, syntezie chemicznej, chromatografii, analityce i wielu innych dziedzinach.

Skontaktuj się z zespołem ds. pomocy technicznej