The levels of sulfate-reducing bacteria (SRB), including Desulfovibrionaceae, in the gut increase following a fat-enriched diet. Endotoxins from gut microbiota contribute to the inflammation process, leading to metabolic diseases. Thus, we sought to characterize the lipid A structures of Desulfovibrionaceae lipopolysaccharides (LPS) that are associated with the microbiota inflammatory properties. LPS variants were obtained from two SRB isolates from the gut of a single individual. These LPS variants shared similar lipid A moieties with Enterobacterial LPS, but differed from one another with regard to fatty-acid numbers and endotoxic activity. This first complete structural characterization of Desulfovibrio lipid A gives new insights into previously published data on Desulfovibrio lipid A biosynthesis. LPS microdiversity within SRBs illustrates how adaptation can influence pro-inflammatory potential.