Passa al contenuto
Merck

Cyto- and genotoxic effects of metallic nanoparticles in untransformed human fibroblast.

Toxicology in vitro : an international journal published in association with BIBRA (2015-06-02)
Leonardo P Franchi, Bella B Manshian, Tiago A J de Souza, Stefaan J Soenen, Elaine Y Matsubara, J Mauricio Rosolen, Catarina S Takahashi
ABSTRACT

Metallic nanoparticles such as silver (Ag), cerium dioxide (CeO2) and titanium dioxide (TiO2) are produced at a large scale and included in many consumer products. It is well known that most metallic NPs are toxic to humans which raise concerns about these engineered particles. Various studies have already been published on the subject, however, almost all of these studies have been conducted in cancer or transformed cell lines. In this work we performed a comparative evaluation of these metallic NPs on normal untransformed human fibroblasts (GM07492) detecting cyto- and geno-toxic responses after exposure to these NPs. Our results showed that all three metallic NPs were able to cross the plasma membrane and were mainly found in endocytic vesicles. The Ag and TiO2 NPs affected mitochondrial enzymatic activity (XTT), increased DNA fragmentation, oxidative damage (Comet assay) and induced cell death mainly by the apoptotic pathway. Ag NPs increased GADD45α transcript levels and the phosphorylation of proteins γH2AX. Transient genotoxicity was also observed from exposure to CeO2 NPs while TiO2 NPs showed no increase in DNA damage at sub-cytotoxic concentrations. In comparison, Ag NPs were found to be the most cyto-genotoxic NPs to fibroblasts. Thus, these results support the use of normal fibroblast as a more informative tool to detect the mechanisms of action induced by metallic NPs.

MATERIALI
N° Catalogo
Marchio
Descrizione del prodotto

Sigma-Aldrich
HEPES, ≥99.5% (titration)
Sigma-Aldrich
HEPES, BioPerformance Certified, ≥99.5% (titration), suitable for cell culture
Sigma-Aldrich
Sodio cloruro, for molecular biology, DNase, RNase, and protease, none detected, ≥99% (titration)
Sigma-Aldrich
Ioduro di propidio, ≥94.0% (HPLC)
Sigma-Aldrich
Sodio cloruro, 5 M in H2O, BioReagent, for molecular biology, suitable for cell culture
Sigma-Aldrich
Sodio cloruro, 0.9% in water, BioXtra, suitable for cell culture
Sigma-Aldrich
Sodio cloruro, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99%
Sigma-Aldrich
BIS-TRIS, ≥98.0% (titration)
Sigma-Aldrich
HEPES, BioUltra, for molecular biology, ≥99.5% (T)
SAFC
Sodio cloruro, 5 M
Sigma-Aldrich
Titanium(IV) oxide, nanopowder, 21 nm primary particle size (TEM), ≥99.5% trace metals basis
Sigma-Aldrich
Soluzione tampone HEPES, 1 M in H2O
Sigma-Aldrich
Titanium(IV) oxide, anatase, nanopowder, <25 nm particle size, 99.7% trace metals basis
Sigma-Aldrich
Methyl methanesulfonate, 99%
Sigma-Aldrich
Etoposide, synthetic, 95.0-105.0%, powder
SAFC
HEPES
SAFC
BIS-TRIS
Sigma-Aldrich
Titanium(IV) oxide, anatase, powder, 99.8% trace metals basis
Sigma-Aldrich
Sodio cloruro, BioUltra, for molecular biology, ~5 M in H2O
Sigma-Aldrich
Sodio cloruro, BioUltra, for molecular biology, ≥99.5% (AT)
Sigma-Aldrich
Titanium(IV) oxide, rutile, powder, <5 μm, ≥99.9% trace metals basis
Sigma-Aldrich
Titanium(IV) oxide, anatase, powder, −325 mesh, ≥99% trace metals basis
Sigma-Aldrich
Titanium(IV) oxide, rutile, nanopowder, <100 nm particle size, 99.5% trace metals basis
Sigma-Aldrich
HEPES, BioXtra, suitable for mouse embryo cell culture, ≥99.5% (titration)
Sigma-Aldrich
BIS-TRIS, BioUltra, ≥99.0% (NT)
Sigma-Aldrich
Triton X-100, laboratory grade
Sigma-Aldrich
Titanium(IV) oxide, mixture of rutile and anatase, nanopowder, <100 nm particle size (BET), 99.5% trace metals basis
Sigma-Aldrich
BIS-TRIS, BioPerformance Certified, suitable for cell culture, suitable for insect cell culture, ≥98.0%
SAFC
HEPES
Sigma-Aldrich
BIS-TRIS, BioXtra, ≥98.0% (titration)