Pular para o conteúdo
Merck

The effects of interfacial potential on antimicrobial propensity of ZnO nanoparticle.

Scientific reports (2015-04-16)
Manoranjan Arakha, Mohammed Saleem, Bairagi C Mallick, Suman Jha
RESUMO

The work investigates the role of interfacial potential in defining antimicrobial propensity of ZnO nanoparticle (ZnONP) against different Gram positive and Gram negative bacteria. ZnONPs with positive and negative surface potential are tested against different bacteria with varying surface potentials, ranging -14.7 to -23.6 mV. Chemically synthesized ZnONPs with positive surface potential show very high antimicrobial propensity with minimum inhibitory concentration of 50 and 100 μg/mL for Gram negative and positive bacterium, respectively. On other hand, ZnONPs of the same size but with negative surface potential show insignificant antimicrobial propensity against the studied bacteria. Unlike the positively charged nanoparticles, neither Zn(2+) ion nor negatively charged ZnONP shows any significant inhibition in growth or morphology of the bacterium. Potential neutralization and colony forming unit studies together proved adverse effect of the resultant nano-bacterial interfacial potential on bacterial viability. Thus, ZnONP with positive surface potential upon interaction with negative surface potential of bacterial membrane enhances production of the reactive oxygen species and exerts mechanical stress on the membrane, resulting in the membrane depolarization. Our results show that the antimicrobial propensity of metal oxide nanoparticle mainly depends upon the interfacial potential, the potential resulting upon interaction of nanoparticle surface with bacterial membrane.

MATERIAIS
Número do produto
Marca
Descrição do produto

Sigma-Aldrich
HEPES, ≥99.5% (titration)
Sigma-Aldrich
HEPES, BioPerformance Certified, ≥99.5% (titration), suitable for cell culture
Sigma-Aldrich
Ureia, powder, BioReagent, for molecular biology, suitable for cell culture
Sigma-Aldrich
diacetato de 2′,7′-diclorofluoresceína, ≥97%
Sigma-Aldrich
HEPES, BioUltra, for molecular biology, ≥99.5% (T)
Sigma-Aldrich
Urea solution, BioUltra, ~8 M in H2O
Supelco
Urea, 8 M (after reconstitution with 16 mL high purity water)
Sigma-Aldrich
HEPES, 1 M in H2O
SAFC
HEPES
Sigma-Aldrich
Ureia, BioXtra, pH 7.5-9.5 (20 °C, 5 M in H2O)
Sigma-Aldrich
Ureia, BioUltra, for molecular biology, 99% (T)
Sigma-Aldrich
HEPES, BioXtra, suitable for mouse embryo cell culture, ≥99.5% (titration)
Sigma-Aldrich
Ureia, suitable for electrophoresis
SAFC
HEPES
Sigma-Aldrich
Ureia, ACS reagent, 99.0-100.5%
Sigma-Aldrich
Glutaraldeído, Grade I, 25% in H2O, specially purified for use as an electron microscopy fixative
Sigma-Aldrich
Ureia, meets USP testing specifications
Sigma-Aldrich
Glutaraldeído, 50 wt. % in H2O
Sigma-Aldrich
Glutaraldeído, Grade II, 25% in H2O
Sigma-Aldrich
HEPES, BioXtra, pH 5.0-6.5 (1 M in H2O), ≥99.5% (titration)
Sigma-Aldrich
Glutaraldeído, 50 wt. % in H2O, FCC
Sigma-Aldrich
Urea solution, 40 % (w/v) in H2O
Sigma-Aldrich
Citrate Concentrated Solution, BioUltra, for molecular biology, 1 M in H2O
Sigma-Aldrich
Citrate Concentrated Solution, BioReagent, suitable for coagulation assays, 4 % (w/v)
Supelco
Citrato de sódio tribásico, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
HEPES, anhydrous, free-flowing, Redi-Dri, ≥99.5%
Sigma-Aldrich
Glutaraldeído, Grade I, 70% in H2O, specially purified for use as an electron microscopy fixative or other sophisticated use
Sigma-Aldrich
Ureia, ReagentPlus®, ≥99.5%, pellets
Sigma-Aldrich
Glutaraldeído, Grade I, 50% in H2O, specially purified for use as an electron microscopy fixative or other sophisticated use
Sigma-Aldrich
Glutaraldeído, technical, ~50% in H2O (5.6 M)