Pular para o conteúdo
Merck
  • Extracellular delivery of modified oligonucleotide and superparamagnetic iron oxide nanoparticles from a degradable hydrogel triggered by tumor acidosis.

Extracellular delivery of modified oligonucleotide and superparamagnetic iron oxide nanoparticles from a degradable hydrogel triggered by tumor acidosis.

Biomaterials (2013-03-13)
Ching-Wen Lin, S-Ja Tseng, Ivan M Kempson, Shuenn-Chen Yang, Tse-Ming Hong, Pan-Chyr Yang
RESUMO

Chemically modified antisense RNA oligonucleotides (antagomir) offer promise for cancer therapies but suffer from poor therapeutic effect after systemic administration. Chemical modification or loading in degradable hydrogels can offer improvements in the accuracy and efficacy for sustained delivery at specific sites. In our approach, antagomir were entrapped with degradable poly(ethylene glycol) (PEG)-based hydrogels, with and without incorporation of imidazole. Superparamagnetic iron oxide nanoparticles (SPION) were simultaneously loaded with intent for magnetic resonance imaging (MRI). The incorporation of imidazole into the PEG hydrogels led to a tunable-pH-response that dictated hydrogel swelling ratio and release rate of antagomir and SPION. As a result, the PEG-imidazole hydrogel swelling ratio and degradation over a 5 week period changed up to 734% and 149% as the pH dropped from 7.4 to 6.7, respectively. The swelling ratio of PEG-imidazole hydrogels was completely reversible over repeatable cycles of pH change. The stimuli-responsive behavior of PEG-imidazole hydrogels was used for the release of antagomir and SPION under conditions consistent with tumor acidosis. This manuscript demonstrates feasibility in designing tunable-pH-responsive hydrogels for loading multimodality therapeutic and contrast agents to enhance the bioactivity of chemically modified antisense RNA oligonucleotide and SPION for acidosis-related tumor therapy and MRI imaging applications.

MATERIAIS
Número do produto
Marca
Descrição do produto

Sigma-Aldrich
Imidazol, ReagentPlus®, 99%
Sigma-Aldrich
Imidazol, for molecular biology, ≥99% (titration)
Sigma-Aldrich
Imidazol, ACS reagent, ≥99% (titration)
Sigma-Aldrich
Imidazole buffer Solution, BioUltra, 1 M in H2O
Sigma-Aldrich
Imidazol, BioUltra, ≥99.5% (GC)
Sigma-Aldrich
Poly(ethylene glycol) dimethacrylate, average Mn 750, contains 900-1100 ppm MEHQ as inhibitor
Sigma-Aldrich
Imidazol, puriss. p.a., ≥99.5% (GC)
Sigma-Aldrich
Poly(ethylene glycol) dimethacrylate, average Mn 550, contains 80-120 ppm MEHQ as inhibitor, 270-330 ppm BHT as inhibitor
Sigma-Aldrich
Imidazole hydrochloride
Sigma-Aldrich
Imidazol, ≥99% (titration), crystalline
Sigma-Aldrich
Imidazol, BioUltra, for molecular biology, ≥99.5% (GC)
Supelco
Imidazol, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Poly(ethylene glycol) dimethacrylate, average Mn 2000, contains ~1000 ppm MeHQ as stabilizer
Sigma-Aldrich
Poly(ethylene glycol) dimethacrylate, average Mn 6,000, contains 1000 ppm 4-methoxyphenol as inhibitor
Sigma-Aldrich
Poly(ethylene glycol) dimethacrylate, average Mn 10,000, contains MEHQ as inhibitor
Sigma-Aldrich
Poly(ethylene glycol) dimethacrylate, average Mn 20,000, contains MEHQ as inhibitor
Imidazol, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
Imidazol, ReagentPlus®, 99%, Redi-Dri, free-flowing
Sigma-Aldrich
Imidazol, for molecular biology, ≥99% (titration), free-flowing, Redi-Dri