Pular para o conteúdo
Merck
  • Signatures of cell stress and altered bioenergetics in skin fibroblasts from patients with multiple sclerosis.

Signatures of cell stress and altered bioenergetics in skin fibroblasts from patients with multiple sclerosis.

Aging (2020-07-09)
Jordan M Wilkins, Oleksandr Gakh, Parijat Kabiraj, Christina B McCarthy, W Oliver Tobin, Charles L Howe, Claudia F Lucchinetti
RESUMO

Multiple sclerosis (MS) is a central nervous system inflammatory demyelinating disease and the most common cause of non-traumatic disability in young adults. Despite progress in the treatment of the active relapsing disease, therapeutic options targeting irreversible progressive decline remain limited. Studies using skin fibroblasts derived from patients with neurodegenerative disorders demonstrate that cell stress pathways and bioenergetics are altered when compared to healthy individuals. However, findings in MS skin fibroblasts are limited. Here, we collected skin fibroblasts from 24 healthy control individuals, 30 patients with MS, and ten with amyotrophic lateral sclerosis (ALS) to investigate altered cell stress profiles. We observed endoplasmic reticulum swelling in MS skin fibroblasts, and increased gene expression of cell stress markers including BIP, ATF4, CHOP, GRP94, P53, and P21. When challenged against hydrogen peroxide, MS skin fibroblasts had reduced resiliency compared to ALS and controls. Mitochondrial and glycolytic functions were perturbed in MS skin fibroblasts while exhibiting a significant increase in lactate production over ALS and controls. Our results suggest that MS skin fibroblasts have an underlying stress phenotype, which may be disease specific. Interrogating MS skin fibroblasts may provide patient specific molecular insights and aid in prognosis, diagnosis, and therapeutic testing enhancing individualized medicine.

MATERIAIS
Número do produto
Marca
Descrição do produto

Sigma-Aldrich
Soro bovino fetal, USA origin, sterile-filtered, suitable for cell culture, suitable for hybridoma
Sigma-Aldrich
Azul de tiazolil Brometo de tetrazólio, 98%
Sigma-Aldrich
Antimycin A from Streptomyces sp.
Sigma-Aldrich
2-desoxi-D-glicose, ≥98% (GC), crystalline
Sigma-Aldrich
Carbonilcianeto 4-(trifluorometoxi)fenil-hidrazona, ≥98% (TLC), powder
Sigma-Aldrich
Pyruvic acid, 98%
Sigma-Aldrich
Ácido cítrico, 99%
Sigma-Aldrich
DL-Malic acid, ReagentPlus®, ≥99%
Sigma-Aldrich
3-Hydroxybutyric acid, 95%
Sigma-Aldrich
Fumaric acid, ≥99.0% (T)
Sigma-Aldrich
2-Ketobutyric acid, 97%
Sigma-Aldrich
4-Methyl-2-oxovaleric acid, ≥98.0% (T)
Sigma-Aldrich
Ácido succínico, BioXtra, BioRenewable, ≥99.0%
Sigma-Aldrich
Sodium 3-methyl-2-oxobutyrate, 95%
Sigma-Aldrich
Sodium DL-lactate, ReagentPlus®, ≥99.0% (NT)
Sigma-Aldrich
α-Ketoglutaric acid, ≥98.5% (NaOH, titration)
Sigma-Aldrich
(±)-3-Methyl-2-oxovaleric acid sodium salt
Sigma-Aldrich
β-Hydroxyisovaleric acid, ≥95.0% (T)
Sigma-Aldrich
Sodium pyruvate-13C3, 99 atom % 13C
Sigma-Aldrich
2-Hydroxybutanoic acid, AldrichCPR
Sigma-Aldrich
Sodium DL-3-hydroxybutyrate-1,3-13C2, 99 atom % 13C
Sigma-Aldrich
3-Methyl-2-oxopentanoic acid, AldrichCPR
Sigma-Aldrich
3-Methyl-13C-glutaconic acid-2,4-13C2, cis/trans mixture, 99 atom % 13C, ≥98% (CP)
Supelco
3-Methylglutaconic acid, mixture of E and Z isomers, ≥98.0% (HPLC)