Here we report the fabrication of nanofibre-based organic phototransistors (OPTs) using preformed poly(3-hexylthiophene) (P3HT) nanofibres. OPT performance is analysed based on two important parameters: photoresponsivity R and photosensitivity P. Before testing the devices as OPTs, the normal organic field-effect transistor
Analytical and bioanalytical chemistry, 412(25), 6707-6776 (2020-08-02)
Within the framework outlined in the first part of the review, the second part addresses attempts to increase receptor material performance through the use of sensor systems and chemometric methods, in conjunction with receptor preparation methods and sensor-specific tasks. Conclusions
The fabrication of scaffolds with suitable chemical, physical, and electrical properties is critical for nerve cell adhesion and proliferation. Recently, electrical stimulation on conductive polymers has been applied to construct functional nerve cell scaffolds. Herein, we prepared natural polymer (cellulose)/conductive
Electrochemical polymerisation is reported to be a method for readily producing copolymers of various conjugated molecules. We employed this method for mixtures of indole, carbazole or fluorene with 3-hexylthiophene (HT), in order to obtain their soluble copolymers. Although polymer films
Unser Team von Wissenschaftlern verfügt über Erfahrung in allen Forschungsbereichen einschließlich Life Science, Materialwissenschaften, chemischer Synthese, Chromatographie, Analytik und vielen mehr..