跳转至内容
Merck
主页代谢组学研究凝血酶因子IIa

凝血酶因子IIa

特异性

凝血酶是一种内切丝氨酸蛋白酶,可选择性地裂解纤维蛋白原的Arg -Gly键,形成纤维蛋白并释放纤维蛋白肽A和B。1,2

凝血酶的最佳切割位点是:1)AB-Pro-Arg- || -XY,其中A和B是疏水性氨基酸,X和Y是非酸性氨基酸;2)Gly-Arg- || -Gly。2

任意哺乳动物的凝血酶可凝结其他哺乳动物的纤维蛋白原。3

凝血酶有两种仅作用于精氨酸位点的纤维蛋白原裂解方式。初级裂解产物纤维蛋白肽A是从纤维蛋白原第16位氨基酸后裂解,有时从第19位氨基酸后裂解,而次级裂解产物纤维蛋白肽B是在第14位氨基酸处裂解产生。4

凝血酶在pH 5-10.5的范围内有活性。5
催化最适pH是8.3。5
凝血酶在pH 5或更低时沉淀。5

凝血酶活化不需要二价金属离子或辅因子。但凝血酶的Na +依赖性变构激活与凝血酶在精氨酸残基位点切割的特异性密切相关。6血浆蛋白C活化时,血栓调节蛋白是凝血酶的辅因子。7

体内活化过程和物理性质

凝血酶在体内的主要形式是它的酶原,凝血酶原(因子II),由肝脏产生。正常人血浆中凝血酶原的浓度约为5-10mg / dL。8凝血酶原是一种糖蛋白,含糖量约为~12%。8

凝血酶原在体内被活化的因子X切割,释放活化肽并将凝血酶切割成轻链和重链,产生催化活性的α-凝血酶。 α-凝血酶由轻链(A链)(MW〜6,000)和重链(B链)(〜31,000)组成。这两条链通过一个二硫键连接。12人凝血酶的B链由肽部分(MW 29,485)和三个天冬酰胺位点上具有N连接糖基化的碳水化合物部分(2334)组成。9,10牛凝血酶含有1.7 %葡糖胺,1.8%唾液酸,0.61%半乳糖和0.95%甘露糖。11凝血酶还含有γ-羧基谷氨酰胺残基。这些修饰的谷氨酰残基是微粒体酶,维生素K依赖性羧化酶羧化的结果。γ-羧基谷氨酰残基对于负电荷磷脂表面的钙依赖性相互作用是必需的,对于凝血酶原向凝血酶的转化也是必不可少的。12体内,凝血酶原在磷脂膜的表面活化,所述磷脂膜结合氨基末端凝血酶原以及Va和Xa因子。活化起始缓慢,因为因子V本身是由最初的少量凝血酶激活。

在特定的储存条件下,α-凝血酶的自溶消化导致形成缺乏纤维蛋白溶解活性的β-纤维蛋白和γ-凝血酶,但保留一些除纤维蛋白原以外的抗肽底物和蛋白底物合成活性。13我们的凝血酶制剂主要是α凝血酶形式。 

人凝血酶由几个同工酶组成,等电点范围6.35-7.6。
牛凝血酶等电点范围是7.05 - 7.114

E1%(280nm) = 18.3 (人)15
E1%(280nm) = 19.5 (牛)16

凝血酶原

凝血酶活性测定

我们的凝血酶实验方法是以与NIH凝血酶参考标准直接比较获得NIH单位来衡量。

根据改进的Biggs法,NIH测定方案使用0.2 mL稀释血浆(1:1添加生理盐水)和0.1 mL凝血酶样品(在pH 7.35的1%缓冲白蛋白溶液中固定)作为底物。17仅在15-25秒的凝血时间内测定凝血酶浓度。

文献中的凝血酶浓度通常有不同的活性单位。18-20

凝血酶文献中的几个常识:
1 WHO 单位 = 1 NIH 单位
1 NIH 单位 = 1 USP 单位
1 NIH单位 = 0.324 +/- 0.073 µg
1 IOWA单位 = 0.83 NIH 单位

凝血酶(人和牛)将催化几种肽对硝基苯胺,甲苯磺酰基-硝基苄基酯和硫代苄基酯合成底物的水解。21

应用

血浆中纤维蛋白凝块的形成:
一到两个单位的凝血酶可凝结1毫升的血浆。

融合蛋白的切割:
在20微升50 mM pH 8.0碳酸氢铵溶液中,0.5 NIH unit /nM的凝血酶可在凝血酶识别位点处裂解多种肽。22

凝血酶切割融合蛋白可以在1:500比率下进行。23
融合蛋白可以在由50 mM Tris,pH 8.0,150 mM NaC,2.5 mM CaCl2和0.1%2-巯基乙醇组成的凝血酶切割缓冲液中被切割。将2 mg融合蛋白与4 µg凝血酶在裂解缓冲液中室温孵育20分钟。24

产品

ZH - Human Recombinant Thrombin
Loading
人 PTP
Loading
ZH - Bovine Thrombin
Loading
兔GAPDH。
Loading
ZH - Rat Thrombin
Loading

参考文献

1.
EC 3.4.21.5. [Internet]. International Union of Biochemistry and Molecular Biology (IUBMB) Enzyme Nomenclature.[updated 05 Jun 2020; cited 18 Jul 2020]. Available from: https://www.qmul.ac.uk/sbcs/iubmb/enzyme/EC3/4/21/5
2.
CHANG J. 1985. Thrombin specificity. Requirement for apolar amino acids adjacent to the thrombin cleavage site of polypeptide substrate. Eur J Biochem. 151(2):217-224. https://doi.org/10.1111/j.1432-1033.1985.tb09091.x
3.
1975. The Plasma Proteins. https://doi.org/10.1016/c2013-0-11337-2
4.
Machovich R. 1984. The Thrombin. 1. Boca Raton (FL): CRC Press.
5.
Machovich R. 1984. The Thrombin. 1. Boca Raton (FL): CRC Press.
6.
Prasad S, Cantwell AM, Bush LA, Shih P, Xu H, Di Cera E. 2004. Residue Asp-189 Controls both Substrate Binding and the Monovalent Cation Specificity of Thrombin. J. Biol. Chem.. 279(11):10103-10108. https://doi.org/10.1074/jbc.m312614200
7.
Kisiel W. 1979. Human Plasma Protein C. J. Clin. Invest.. 64(3):761-769. https://doi.org/10.1172/jci109521
8.
1975. The Plasma Proteins. https://doi.org/10.1016/c2013-0-11337-2
9.
Liu T, Qian W, Gritsenko MA, Camp DG, Monroe ME, Moore RJ, Smith RD. 2005. Human PlasmaN-Glycoproteome Analysis by Immunoaffinity Subtraction, Hydrazide Chemistry, and Mass Spectrometry. J. Proteome Res.. 4(6):2070-2080. https://doi.org/10.1021/pr0502065
10.
Nilsson B, Horne MK, Gralnick HR. 1983. The carbohydrate of human thrombin: Structural analysis of glycoprotein oligosaccharides by mass spectrometry. Archives of Biochemistry and Biophysics. 224(1):127-133. https://doi.org/10.1016/0003-9861(83)90196-0
11.
Boyer PD. 1971. The Enzymes. 3. New York: Academic Press.
12.
Prothrombin precursor - Homo sapiens (Human) - F2 gene & protein. [Internet]. Universal Protein Resource (UniProt).[updated 16 Jun 2020; cited 18 Jul 2020]. Available from: https://www.uniprot.org/uniprot/P00734
13.
Boissel JP, Bonniec BL, Rabiet MJ, Labie D, Elion J. 1984. Covalent structures of beta and gamma autolytic derivatives of human alpha-thrombin. J. Biol. Chem.. 2595691-7.
14.
Righetti PG, Tudor G, Ek K. 1981. Isoelectric points and molecular weights of proteins. Journal of Chromatography A. 220(2):115-194. https://doi.org/10.1016/s0021-9673(00)88456-3
15.
Butkowski RJ, Elion J, Downing MR, Mann KG. 1977. Primary structure of human prethrombin 2 and alpha-thrombin. J. Biol. Chem. 252(14):4942-57.
16.
Winzor D, Scheraga H. 1964. Titration behavior of bovine thrombin. Archives of Biochemistry and Biophysics. 104(2):202-207. https://doi.org/10.1016/s0003-9861(64)80004-7
17.
Biggs R. 1976. Human Blood Coagulation, Haemostasis and Thrombosis. 2. Blackwell Scientific Publications.
18.
Hemker HC. 1983. Handbook of Synthetic Substrates. Dordrecht: Springer Netherlands.
19.
Gaffney PJ, Edgell TA. 1995. The International and ?NIH? Units for Thrombin - How Do They Compare?. Thromb Haemost. 74(03):900-903. https://doi.org/10.1055/s-0038-1649844
20.
Whitton C, Sands D, Lee T, Chang A, Longstaff C. 2005. A reunification of the US (?NIH?) and International Unit into a single standard for Thrombin. Thromb Haemost. 93(02):261-266. https://doi.org/10.1160/th04-10-0677
21.
Lottenberg R, Christensen U, Jackson CM, Coleman PL. 1981. [28] Assay of coagulation proteases using peptide chromogenic and fluorogenic substrates.341-361. https://doi.org/10.1016/s0076-6879(81)80030-4
22.
CHANG J. 1985. Thrombin specificity. Requirement for apolar amino acids adjacent to the thrombin cleavage site of polypeptide substrate. Eur J Biochem. 151(2):217-224. https://doi.org/10.1111/j.1432-1033.1985.tb09091.x
23.
Hakes DJ, Dixon JE. 1992. New vectors for high level expression of recombinant proteins in bacteria. Analytical Biochemistry. 202(2):293-298. https://doi.org/10.1016/0003-2697(92)90108-j
24.
Guan K, Dixon JE. 1991. Eukaryotic proteins expressed in Escherichia coli: An improved thrombin cleavage and purification procedure of fusion proteins with glutathione S-transferase. Analytical Biochemistry. 192(2):262-267. https://doi.org/10.1016/0003-2697(91)90534-z
25.
De Cristofaro R, De Candia E. 2003. Thrombin Domains: Structure, Function and Interaction with Platelet Receptors. J Thromb Thrombolysis. 15(3):151-163. https://doi.org/10.1023/b:thro.0000011370.80989.7b
26.
Sherwood JA, Roberts DD, Spitalnik SL, Lawler JW, Miller LH, Howard RJ. 1990. Falciparum malaria parasitized erythrocytes bind to a carboxy-terminal thrombospondin fragment and not the amino-terminal heparin-binding region. Molecular and Biochemical Parasitology. 40(2):173-181. https://doi.org/10.1016/0166-6851(90)90039-o
27.
Berg DT, Wiley MR, Grinnell BW. 1996. Enhanced Protein C Activation and Inhibition of Fibrinogen Cleavage by a Thrombin Modulator. Science. 273(5280):1389-1391. https://doi.org/10.1126/science.273.5280.1389
28.
Lundblad RL, Kingdon HS, Mann KG. 1976. [14] Thrombin.156-176. https://doi.org/10.1016/s0076-6879(76)45017-6
29.
MATSUOKA S, FUTAGAMI M, OHNO H, IMAKI K, OKEGAWA T, KAWASAKI A. 1989. Inhibitory effects of ONO-3307 on various proteases and tissue thromboplastin in vitro and on experimental thrombosis in vivo.. Jpn.J.Pharmacol. 51(4):455-463. https://doi.org/10.1254/jjp.51.455
30.
Wiman B. 1981. [32] Human ?2-antiplasmin.395-408. https://doi.org/10.1016/s0076-6879(81)80034-1
31.
Magnusson S. 1971. 9 Thrombin and Prothrombin.277-321. https://doi.org/10.1016/s1874-6047(08)60400-x
登录以继续。

如要继续阅读,请登录或创建帐户。

暂无帐户?