跳转至内容
Merck
主页蛋白表达多巴胺及去甲肾上腺素代谢

多巴胺及去甲肾上腺素代谢

儿茶酚胺的再摄取在其突触水平的调节中起到了重要的作用,同时其代谢也对儿茶酚胺神经传递的终止具有重要贡献。儿茶酚胺代谢酶的相对丰度和活性在不同物种和不同细胞群中存在差异,因此这些因素决定了存在于特定组织或体液中特定代谢物的相对浓度。单胺氧化酶A(MAO)或儿茶酚-O-甲基转移酶(COMT)均可对儿茶酚胺分解代谢的第一步进行催化。

MAO位于线粒体的外膜上,因此在脑中主要存在于神经末梢和神经胶质中。在外周组织中,MAO在肝脏和肾脏中的浓度特别高。不同的基因编码了MAO的两种异构体(A型和B型),而其区别在于底物特异性和对不可逆选择性抑制剂氯吉灵和丙炔苯丙胺(司来吉兰)的敏感性。在脑中,MAO-A会倾向存在于多巴胺能和去甲肾上腺素能神经元中,而MAO-B则似乎是5-羟色胺能神经元和神经胶质中所存在的主要形式。MAO抑制剂被用于抑郁症和帕金森氏病的治疗,而MAO-A(如吗氯贝胺)和MAO-B(拉扎贝胺)的可逆抑制剂现都可已存在。

膜结合的COMT似乎主要存在于突触后神经元中,尽管其对于儿茶酚胺具有较低亲和力的可溶形式也存在于神经胶质中,并且也广泛分布在脑外。在临床实验中,COMT抑制剂已被证明可延长L-DOPA的作用时间用于帕金森症的治疗。

在MAO反应中所产生的具有潜在毒性的醛中间体(多巴胺的3,4-二羟基苯乙醛,3去甲肾上腺素的4-二羟基苯基乙醛用于)会被迅速还原为醇(通过细胞溶质醛还原酶或醛糖还原酶)或被氧化成酸(通过线粒体醛脱氢酶)。在脑中,从多巴胺而形成的酸代谢物是有利的,而对于中枢去甲肾上腺素分解代谢,醇代谢物则占据主导。醇脱氢酶能够催化醇和醛之间的相互转化。后3种酶的底物和抑制剂特异性有限。

由于MAO在细胞内的分布,3,4-二羟基苯乙酸 (DOPAC)以及 3,4-二羟基苯乙二醇(DHPG)可在神经内或神经外形成,然而,由于COMT的神经外定位,高香草酸(HVA)以及3-甲氧基-4-羟基苯基 - 二醇 (MHPG)则主要在神经外形成。在静息状态下,相当一部分的代谢来自从囊泡储存液中被动渗出的胺。灵长类脑中儿茶酚胺代谢的主要终产物分别是HVA(对于多巴胺)和MHPG(对于去甲肾上腺素),而在大鼠脑中它们则分别是DOPAC和DOPAC-硫酸盐(对于多巴胺)和MHPG-硫酸盐 (对于去甲肾上腺素)。在外周组织中,去甲肾上腺素代谢的主要代谢物是香草扁桃酸(VMA) (由肝脏中的游离的MHPG所形成),而多巴胺主要的最终代谢物则是HVA (很大程度是在肝脏外形成)。

此外,脑和外周组织中的儿茶酚胺及其代谢物是苯酚磺基转移酶的底物,并形成硫酸盐结合物。槲皮素、甲芬那酸以及托芬那酸是苯酚磺基转移酶的抑制剂,但对P-构型显示出更高的选择性,而儿茶酚则是M-构型的优先底物。在外周组织中,儿茶酚胺和代谢物的葡糖苷酸结合物通过UDP-葡糖醛酸基转移酶的作用而形成。一旦发生结合,结合物则不再是MAO或COMT的有效底物。

针对儿茶酚胺代谢物的组织浓度的测定(或代谢物与母体胺的浓度比率)会是神经元系统中代谢活动或递质利用一项有用的生化指标。虽然3-甲氧基酪胺以非常低的浓度存在并且在死后会经历快速变化,但精确测量其在组织中浓度似乎可会为多巴胺的释放提供一项死后指标。

表1允许的调节剂

缩写:

AL 1576: 螺(2,7-二氟-9H-芴酮-9,4′-咪唑啉)-2′5′™-二酮
OR-486: 3,5-二硝基-1,2-苯二醇
Ro 16-6491: N-2-氨基乙基-4-氯苯甲酰胺
Ro 41-0960: 2′€™-氟-3,4-二羟-5-硝基苯基
Ro 41-1049: N-(2-氨乙基)-5-(3-氟苯基)-4-噻唑甲酰胺

参考文献

1.
Abell CW, Kwan S. 2000. Molecular characterization of monoamine oxidases A and B.129-132. https://doi.org/10.1016/s0079-6603(00)65004-3
2.
Bonifati V, Meco G. 1999. New, Selective Catechol-O-Methyltransferase Inhibitors as Therapeutic Agents in Parkinson?s Disease. Pharmacology & Therapeutics. 81(1):1-36. https://doi.org/10.1016/s0163-7258(98)00032-1
3.
Brix LA, Barnett AC, Duggleby RG, Leggett B, McManus ME. 1999. Analysis of the Substrate Specificity of Human Sulfotransferases SULT1A1 and SULT1A3:  Site-Directed Mutagenesis and Kinetic Studies?. Biochemistry. 38(32):10474-10479. https://doi.org/10.1021/bi990795q
4.
Burchell B, Brierley CH, Rance D. 1995. Specificity of human UDP-Glucuronosyltransferases and xenobiotic glucuronidation. Life Sciences. 57(20):1819-1831. https://doi.org/10.1016/0024-3205(95)02073-r
5.
Burke W. 2004. Neurotoxicity of MAO Metabolites of Catecholamine Neurotransmitters: Role in Neurodegenerative Diseases. NeuroToxicology. 25(1-2):101-115. https://doi.org/10.1016/s0161-813x(03)00090-1
6.
Jack R, Floyd E, Robert H. 2003. The Biochemical Basis of Neuropharmacology. 8. New York: Oxford University Press.
7.
Eisenhofer G, Kopin IJ, Goldstein DS. 2004. Catecholamine Metabolism: A Contemporary View with Implications for Physiology and Medicine. Pharmacol Rev. 56(3):331-349. https://doi.org/10.1124/pr.56.3.1
8.
Elsworth JD, Roth RH. 1997. Dopamine Synthesis, Uptake, Metabolism, and Receptors: Relevance to Gene Therapy of Parkinson's Disease. Experimental Neurology. 144(1):4-9. https://doi.org/10.1006/exnr.1996.6379
9.
Haile CN, Mahoney JJ, Newton TF, De La Garza R. 2012. Pharmacotherapeutics directed at deficiencies associated with cocaine dependence: Focus on dopamine, norepinephrine and glutamate. Pharmacology & Therapeutics. 134(2):260-277. https://doi.org/10.1016/j.pharmthera.2012.01.010
10.
Hattori N, Wang M, Taka H, Fujimura T, Yoritaka A, Kubo S, Mochizuki H. 2009. Toxic effects of dopamine metabolism in Parkinson's disease. Parkinsonism & Related Disorders. 15S35-S38. https://doi.org/10.1016/s1353-8020(09)70010-0
11.
Kawamura M, Eisenhofer G, Kopin IJ, Kador PF, Lee YS, Tsai J, Fujisawa S, Lizak MJ, Sinz A, Sato S. 1999. Aldose reductase, a key enzyme in the oxidative deamination of norepinephrine in rats. Biochemical Pharmacology. 58(3):517-524. https://doi.org/10.1016/s0006-2952(99)00121-5
12.
Mannisto P, Kaakkola S. 1999. Catechol-O-methyltransferase (COMT): biochemistry, molecular biology, pharmacology, and clinical efficacy of the new selective COMT inhibitors. Pharmacol Rev. 51593-628.
13.
O?Donnell J, Zeppenfeld D, McConnell E, Pena S, Nedergaard M. 2012. Norepinephrine: A Neuromodulator That Boosts the Function of Multiple Cell Types to Optimize CNS Performance. Neurochem Res. 37(11):2496-2512. https://doi.org/10.1007/s11064-012-0818-x
14.
Opmeer EM, Kortekaas R, Aleman A. 2010. Depression and the role of genes involved in dopamine metabolism and signalling. Progress in Neurobiology. 92(2):112-133. https://doi.org/10.1016/j.pneurobio.2010.06.003
15.
Sakakibara Y, Takami Y, Nakayama T, Suiko M, Liu M. 1998. Localization and Functional Analysis of the Substrate Specificity/Catalytic Domains of Human M-form and P-form Phenol Sulfotransferases. J. Biol. Chem.. 273(11):6242-6247. https://doi.org/10.1074/jbc.273.11.6242
16.
Shih JC, Chen K, Ridd MJ. 1999. MONOAMINE OXIDASE: From Genes to Behavior. Annu. Rev. Neurosci.. 22(1):197-217. https://doi.org/10.1146/annurev.neuro.22.1.197
登录以继续。

如要继续阅读,请登录或创建帐户。

暂无帐户?