Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases, 27, 408-417 (2014-08-28)
The detailed analysis of antibiotic resistance mechanisms is essential for understanding the underlying evolutionary processes, the implementation of appropriate intervention strategies and to guarantee efficient treatment options. In the present study, 110 β-lactam-resistant, clinical isolates of Enterobacteriaceae sampled in 2011
Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases, 20(10), O609-O618 (2014-01-16)
A series of extensively drug-resistant isolates of Pseudomonas aeruginosa from two outbreaks in UK hospitals were characterized by whole genome sequencing (WGS). Although these isolates were resistant to antibiotics other than colistin, we confirmed that they are still sensitive to
Multidrug resistance associated with extended-spectrum beta-lactamase (ESBL) and Klebsiella pneumoniae carbapenemase (KPC) among K. pneumoniae is endemic in southern Europe. We retrospectively analyzed the impact of resistance on the appropriateness of empirical therapy and treatment outcomes of K. pneumoniae bloodstream
The clustered regularly interspaced short palindromic repeat (CRISPR)-associated endonuclease 9 (CRISPR/Cas9) system has been demonstrated to be a robust genome engineering tool in a variety of organisms including plants. However, it has been shown that the CRISPR/Cas9 system cleaves genomic
Gram-negative bacteria such as Escherichia coli or Klebsiella spp. frequently cause bloodstream infections. There has been a worldwide increase in resistance in these species to antibiotics such as third generation cephalosporins, largely driven by the acquisition of extended-spectrum beta-lactamase or