Journal of biochemistry, 143(1), 59-68 (2007-11-06)
Cystathionine gamma-synthase (CGS) catalyses the first step of the transsulfuration pathway that converts l-cysteine to l-homocysteine in bacteria, whereas this pathway is absent in human. In this report, we identified a new metB gene from Helicobacter pylori strain SS1, and
Journal of bacteriology, 153(1), 558-561 (1983-01-01)
Mutations were found which enable Escherichia coli K-12 to form homocysteine in the absence of cystathionase. The formation of homocysteine in the mutant strains required cystathionine gamma-synthetase, the metB gene product, but bypassed the normal intermediate cystathionine. It is concluded
Applied and environmental microbiology, 74(1), 99-106 (2007-11-13)
Volatile sulfur compounds are key flavor compounds in several cheese types. To better understand the metabolism of sulfur-containing amino acids, which certainly plays a key role in the release of volatile sulfur compounds, we searched the genome database of Lactobacillus
The transsulfuration enzyme cystathionine gamma-synthase (CGS) catalyses the pyridoxal 5'-phosphate (PLP)-dependent gamma-replacement of O-succinyl-L-homoserine and L-cysteine, yielding L-cystathionine. The crystal structure of the Escherichia coli enzyme has been solved by molecular replacement with the known structure of cystathionine beta-lyase (CBL)
Cystathionine gamma-synthase (CGS) is a pyridoxal phosphate-dependent enzyme that catalyzes a gamma-replacement reaction, in which the succinyl group of an O-succinyl-L-homoserine (L-OSHS) is displaced by the thiol of L-cysteine to form L-cystathionine, in the first step of the bacterial transsulfuration