Water electrolysis offers a promising energy conversion and storage technology for mitigating the global energy and environmental crisis, but there still lack highly efficient and pH-universal electrocatalysts to boost the sluggish kinetics for both cathodic hydrogen evolution reaction (HER) and
The journal of physical chemistry. C, Nanomaterials and interfaces, 122(29), 16756-16764 (2018-09-28)
The effect of the alkali-metal cation (Li+, Na+, K+, and Cs+) on the non-Nernstian pH shift of the Pt(554) and Pt(533) step-associated voltammetric peak is elucidated over a wide pH window (1-13), through computation and experiment. In conjunction with our
Electroreduction of carbon dioxide to hydrocarbons and oxygenates on copper involves reduction to a carbon monoxide adsorbate followed by further transformation to hydrocarbons and oxygenates. Simultaneous improvement of these processes over a single reactive site is challenging due to the
Hydrogen production from renewable energy and ubiquitous water has a potential to achieve sustainability, although current water electrolyzers cannot compete economically with the fossil fuel-based technology. Here, we evaluate water electrolysis at pH 7 that is milder than acidic and alkaline
Methods in cell biology, 119, 261-276 (2014-01-21)
The extracellular matrix (ECM) is a complex, spatially inhomogeneous environment that is host to myriad cell-receptor interactions that promote changes in cell behavior. These biological systems can be probed and simulated with engineered surfaces, but doing so demands careful control