European journal of biochemistry, 269(16), 4134-4142 (2002-08-16)
Flavonols are produced by the desaturation of flavanols catalyzed by flavonol synthase. The enzyme belongs to the class of intermolecular dioxygenases which depend on molecular oxygen and FeII/2-oxoglutarate for activity, and have been in focus of structural studies recently. Flavonol
cDNA corresponding to a flavonol synthase gene from Arabidopsis thaliana was cloned and expressed in Escherichia coli. The recombinant protein was purified to near-homogeneity and the catalytic properties of the enzyme were studied in vitro. Together with kaempferol and apigenin
Three phenolic antioxidant and anti-inflammatory compounds: 7-methylaromadendrin, isoprenylhydroquinone glucoside, and 3.5-dicaffeoylquinic acid methyl ester, all isolated from Western Mediterranean Asteraceae species, have been studied for their inhibitory activity against protein carbonylation, a harmful post-translational modification of peptide chains associated with
TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik, 112(4), 607-617 (2006-01-18)
The extrachromosome 5A of shallot (Allium cepa L., genomes AA) has an important role in flavonoid biosynthesis in the scaly leaf of Allium fistulosum-shallot monosomic addition lines (FF+nA). This study deals with the production and biochemical characterisation of A. fistulosum-shallot
Flavonol synthase was classified as a 2-oxoglutarate-dependent dioxygenase converting natural (2R,3R)-dihydroflavonols, i.e. dihydrokaempferol, to the corresponding flavonols (kaempferol). Flavonol synthase from Citrus unshiu (Satsuma mandarin), expressed in Escherichia coli and purified to homogeneity, was shown to accept also (2S)-naringenin as