Passa al contenuto
Merck
  • Transient and persistent metabolomic changes in plasma following chronic cigarette smoke exposure in a mouse model.

Transient and persistent metabolomic changes in plasma following chronic cigarette smoke exposure in a mouse model.

PloS one (2014-07-10)
Charmion I Cruickshank-Quinn, Spencer Mahaffey, Matthew J Justice, Grant Hughes, Michael Armstrong, Russell P Bowler, Richard Reisdorph, Irina Petrache, Nichole Reisdorph
ABSTRACT

Cigarette smoke exposure is linked to the development of a variety of chronic lung and systemic diseases in susceptible individuals. Metabolomics approaches may aid in defining disease phenotypes, may help predict responses to treatment, and could identify biomarkers of risk for developing disease. Using a mouse model of chronic cigarette smoke exposure sufficient to cause mild emphysema, we investigated whether cigarette smoke induces distinct metabolic profiles and determined their persistence following smoking cessation. Metabolites were extracted from plasma and fractionated based on chemical class using liquid-liquid and solid-phase extraction prior to performing liquid chromatography mass spectrometry-based metabolomics. Metabolites were evaluated for statistically significant differences among group means (p-value≤0.05) and fold change ≥1.5). Cigarette smoke exposure was associated with significant differences in amino acid, purine, lipid, fatty acid, and steroid metabolite levels compared to air exposed animals. Whereas 60% of the metabolite changes were reversible, 40% of metabolites remained persistently altered even following 2 months of smoking cessation, including nicotine metabolites. Validation of metabolite species and translation of these findings to human plasma metabolite signatures induced by cigarette smoking may lead to the discovery of biomarkers or pathogenic pathways of smoking-induced disease.

MATERIALI
N° Catalogo
Marchio
Descrizione del prodotto

Sigma-Aldrich
Acetonitrile, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Metanolo, suitable for HPLC, ≥99.9%
Sigma-Aldrich
2-Propanolo, suitable for HPLC, 99.9%
Sigma-Aldrich
2-Propanolo, ACS reagent, ≥99.5%
Sigma-Aldrich
Metanolo, ACS reagent, ≥99.8%
Sigma-Aldrich
Acido acetico, glacial, ACS reagent, ≥99.7%
Sigma-Aldrich
Acetonitrile, HPLC Plus, ≥99.9%
Sigma-Aldrich
Acido acetico, glacial, ReagentPlus®, ≥99%
Sigma-Aldrich
Cloroformio, contains 100-200 ppm amylenes as stabilizer, ≥99.5%
Sigma-Aldrich
Metanolo, HPLC Plus, ≥99.9%
Sigma-Aldrich
Cloroformio, HPLC Plus, for HPLC, GC, and residue analysis, ≥99.9%, contains amylenes as stabilizer
Sigma-Aldrich
Cloroformio, suitable for HPLC, ≥99.8%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
Esano, ReagentPlus®, ≥99%
Sigma-Aldrich
Esano, suitable for HPLC, ≥95%
Sigma-Aldrich
Acetonitrile, ACS reagent, ≥99.5%
Sigma-Aldrich
Cloroformio, contains ethanol as stabilizer, ACS reagent, ≥99.8%
Sigma-Aldrich
2-Propanolo, HPLC Plus, for HPLC, GC, and residue analysis, 99.9%
Sigma-Aldrich
2-Propanolo, meets USP testing specifications
Sigma-Aldrich
Acetonitrile, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Acido acetico, glacial, ≥99.99% trace metals basis
Sigma-Aldrich
Esano, Laboratory Reagent, ≥95%
Sigma-Aldrich
Metanolo, suitable for HPLC, gradient grade, suitable as ACS-grade LC reagent, ≥99.9%
Sigma-Aldrich
Acido acetico, suitable for HPLC
Sigma-Aldrich
Esano, HPLC Plus, for HPLC, GC, and residue analysis, ≥95%
Sigma-Aldrich
2-Propanolo, Laboratory Reagent, ≥99.5%
Sigma-Aldrich
Metanolo, Laboratory Reagent, ≥99.6%
Sigma-Aldrich
Cloroformio, contains amylenes as stabilizer, ACS reagent, ≥99.8%
Sigma-Aldrich
Cloroformio, ReagentPlus®, ≥99.8%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
2-Propanolo, ≥99.7%, FCC, FG
Sigma-Aldrich
Acetonitrile, anhydrous, 99.8%