Passa al contenuto
Merck

Radiation-induced metabolomic changes in sterile male Μοnochamus alternatus (Coleoptera: Cerambycidae).

Journal of insect science (Online) (2014-11-05)
L J Qu, L J Wang, Y A Zhang, Q H Wang, Y Z Wang, T H Zhao, W Z Cai
ABSTRACT

Radiation-induced sterile insect technique is a biologically based, environment-friendly method for the suppression or eradication of a number of insect pests. Although the basic mechanisms underlying the technology have been well studied, little is known about the cell responses in organisms. Characterization of the metabolic shift associated with radiation exposure in sterile insects would be helpful for understanding the detailed mechanism underlying this technique and promote its practical application. In this article, a metabolomic study was performed to characterize the global metabolic changes induced by radiation using untreated and 40 Gy (60)Coγ-irradiated testes of Japanese pine sawyer, Monochamus alternatus Hope. Differential metabolites were detected and tentatively identified. Many key metabolites in glycolysis and the tricarboxylic acid cycle, as well as most fatty and amino acids, were elevated in irradiated male M. alternatus, presumably resulting from depression of glycolysis and the tricarboxylic acid cycle, each of which are important pathways for energy generation Adenosine Triphosphate (ATP) in insect spermatozoa. The findings in this article will contribute to our knowledge of the characteristic metabolic changes associated with irradiation sterility and understand the molecular mechanisms underlying radiation-induced sterile insect technique.

MATERIALI
N° Catalogo
Marchio
Descrizione del prodotto

Sigma-Aldrich
Metanolo, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Metanolo, ACS reagent, ≥99.8%
Sigma-Aldrich
Cloroformio, contains 100-200 ppm amylenes as stabilizer, ≥99.5%
Sigma-Aldrich
Metanolo, HPLC Plus, ≥99.9%
Sigma-Aldrich
Cloroformio, HPLC Plus, for HPLC, GC, and residue analysis, ≥99.9%, contains amylenes as stabilizer
Sigma-Aldrich
Cloroformio, suitable for HPLC, ≥99.8%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
Cloroformio, contains ethanol as stabilizer, ACS reagent, ≥99.8%
Sigma-Aldrich
Metanolo, suitable for HPLC, gradient grade, suitable as ACS-grade LC reagent, ≥99.9%
Sigma-Aldrich
Metanolo, Laboratory Reagent, ≥99.6%
Sigma-Aldrich
Cloroformio, contains amylenes as stabilizer, ACS reagent, ≥99.8%
Sigma-Aldrich
Cloroformio, ReagentPlus®, ≥99.8%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
Metanolo, ACS spectrophotometric grade, ≥99.9%
Sigma-Aldrich
Metanolo, ACS reagent, ≥99.8%
Sigma-Aldrich
Metanolo, BioReagent, ≥99.93%
Sigma-Aldrich
Metanolo, Absolute - Acetone free
Sigma-Aldrich
Cloroformio, HPLC Plus, for HPLC, GC, and residue analysis, ≥99.9%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
Cloroformio, ACS spectrophotometric grade, ≥99.8%, contains 0.5-1.0% ethanol as stabilizer
USP
Metanolo, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Cloroformio, biotech. grade, ≥99.8%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
Adonitol, ≥99%
Sigma-Aldrich
Metanolo, ACS reagent, ≥99.8%
Sigma-Aldrich
Cloroformio, contains ethanol as stabilizer, meets analytical specification of BP, 99-99.4% (GC)
Sigma-Aldrich
Adonitol, BioXtra, ≥99.0% (HPLC)
Sigma-Aldrich
Nonadecanoic acid, ≥98% (GC)
Sigma-Aldrich
Cloroformio, ≥99%, PCR Reagent, contains amylenes as stabilizer
Supelco
Cloroformio, analytical standard
Supelco
Cloroformio, Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
Metanolo, Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
Metanolo, analytical standard
Sigma-Aldrich
Cloroformio, anhydrous, contains amylenes as stabilizer, ≥99%